
Unit I - Linear Algebra 1

Unit I

Linear Algebra

Unit I - Linear Algebra 2

Linear algebra

• direct solution methods
– Gaussian and Gauss-Jordan elimination with pivoting

– matrix factorizations (LU, Cholesky & QR)

– quantifying inaccuracy

– conditioning

• iterative solution methods
– Jacobi & Gauss-Siedel

– iterative improvement

• over-determined systems
– singular value decomposition

• finding eigenvalues

Unit I - Linear Algebra 3

Tasks of computational linear algebra

Solution of a linear system A·x = b
• A is square coefficient matrix

• b is a known vector of constants (or multi-vectors)

• x is an unknown solution vector

Inverse of A-1

• equivalent of first task with n unit basis vectors as b’s

Eigenvalues A·x = !x

• extremely valuable for many applications

Determinant det(A)
• rarely needed or useful

Unit I - Linear Algebra 4

Linear systems: mathematical facts

• m equations and n unknowns

• n=m has a unique solution if
– no row is a linear combination of the others (row

degeneracy), or

– no column is a linear combination of the others (column
degeneracy)

• non-singular systems have a unique solution

• mathematically these statements are exact

• but numerically.....

Unit I - Linear Algebra 5

Linear system: numerical issue

If a system is too close to linear dependence

• an alogorithm may fail altogether to get a solution

• round off errors can produce apparent linear dependence

at some point in the solution process

• the numerical procedure will fail totally

Unit I - Linear Algebra 6

Linear systems: numerical issue

If a system is too close to linear dependence

• an algorithm may still work but produce nonsense

• accumulated roundoff errors can swamp the solution

• very close cancellations occur in close-to-singular systems

• particularly if n large

• not algorithmic failure, but answer is (wildly) incorrect

• can confirm error by direct substitution in original

equations

Unit I - Linear Algebra 7

When is sophistication necessary?

• sophisticated methods can detect and correct

numerical pathologies

• rough guide for a not-too-singular n"n system

– n < 20...50 single precision

– n < 200...300 double precision

– n = 1000 ok if equations are sparse (special technique

takes advantage of sparseness)

• close-to-singular can be a problem even for very

small systems

Unit I - Linear Algebra 8

Under-determined system

• m<n, or m=n with degenerate equations

• fewer equations than unknowns

• may be no solution, or

• may be an infinite number of solutions

– particular solution (xp) + linear combination of n-m vectors

in the nullspace of A (i.e. A·x=0)

– this becomes an optimization problem

Unit I - Linear Algebra 9

Over-determined system

• m > n and not degenerate

• inconsistent (no solution)

• may be derived from large experimental datasets

– experimental errors

• the best compromise solution might be required

– closest to satisfying all equations

– requires quantification of ‘closeness’ to correct solution

– sum of squares of differences between left and right hand

sides is minimized (linear least squares problem)

– singular value decomposition is a powerful technique

Unit I - Linear Algebra 10

Solution techniques for linear systems

• direct methods

– predictable number of steps

• iterative methods

– converge in as many steps as necessary

– useful when the battle against loss of significance is being

lost (n large and/or close to singular)

• combination

– direct solution then improved by iteration

– useful for close-to-singular systems

Unit I - Linear Algebra 11

Back and forward substitution

• an upper triangular system Ux = b has uij = 0 i>j

– easily solved by back substitution

– xn, xn-1, ... , x1 successively

• a lower triangular system Lx = b has lij = 0 j>i

– easily solved by forward substitution

– x1, x2, ... , xn successively

• triangular systems are numerically straightforward

Unit I - Linear Algebra 12

Direct methods

• tackle a general system Ax=b by

•transforming it to a triangular system or some

combination of triangular systems

• numerical issues can occur in the transformation

steps

Unit I - Linear Algebra 13

Matlab methods

• Matlab has the handy-dandy backslash operator

• to solve a linear system Ax=b write x = A\b

• looks like a matrix inverse but it isn’t

• various approaches are used intelligently according

to characteristics of the system

• Matlab recognizes

– a triangular system and applies a simple substitution

algorithm

– a permuted triangular system and unpermutes it first

– specialized types of systems

– potential numerical problems

Unit I - Linear Algebra 14

Gauss-Jordan elimination: Ax=b

• PRO

– efficient method for matrix inversion

– produces both the solution(s), for (multiple) bj, and the

inverse A-1

– numerically stable if pivoting is used

– straightforward, understandable method

• CON

– all bjs must be stored and manipulated simultaneously

– three times slower than alternatives when inverse is not

required

– inverse matrix prone to roundoff error

Unit I - Linear Algebra 15

Row operations vs....

• inverse matrix A-1 and solutions xj can be built up in

the storage locations of A and bj respectively

• elementary row operations correspond to pre-

multiplication by elementary matrices:

 A·x = b

 (...R3 · R2 · R1 · A) · x = ...R3 · R2 · R1 · b

 (In) · x = ...R3 · R2 · R1 · b

 x = ...R3 · R2 · R1 b

• x can be built-up in stages since the R matrices are

multiplied in the order of acquisition

Unit I - Linear Algebra 16

... column operations

• elementary column operations correspond to post-
multiplication by elementary matrices:

 A·x = b

 A · C1 · C1
-1 · x = b

 A · C1 · C2 · C2
-1 · C1

-1 · x = b

(A · C1 · C2 · C3...) · (...C3
-1 · C2

-1 · C1
-1) · x = b

 (In) · (...C3
-1 · C2

-1 · C1
-1) · x = b

 x = C1 · C2 · C3... · b

• the C matrices must be stored until the last step

• applied to b in the reverse order of acquisition

• a fundamental computational difference between
elementary row and column operations

Unit I - Linear Algebra 17

Gauss-Jordan elimination

• augmented matrix

• operations which do not change the solutions
1. Replace a row of A# by a linear combination of itself and

any other row(s).

2. Interchange two rows of A#.

3. Interchange two columns of A and corresponding rows of

bj and x.

• basic G-J elimination uses only operation #1 but

Unit I - Linear Algebra 18

The need for pivoting

• fails mathematically when a zero pivot is
encountered

• and fails numerically with a too-close-to-zero pivot

• the fix is partial pivoting
– use operation #2 to place a desirable pivot entry in the

current row

– usually sufficient for stability

• using operation #3 as well gives full pivoting

Unit I - Linear Algebra 19

Encountering a zero pivot

• pivoting is essential to avoid total failure of the
algorithm if you run into a zero pivot

• try Ax=b with

Unit I - Linear Algebra 20

Choosing the pivot entry

• can choose from elements that are both:

– on rows below (or on) the one that is being normalized

– on columns to the right (or on) the one that is about to be

eliminated

• partial pivoting

– restricts the pivot choices to the column being eliminated

– easier than full pivoting because permutations of the

vector elements don’t need to be recorded

– almost as good numerically as full pivoting

Unit I - Linear Algebra 21

Example: the value of pivoting

• pivoting can be essential to avoid inaccuracy

• illustrate using the toy computer with 4 significant
digits to exaggerate the effect

• try Ax=b with

Unit I - Linear Algebra 22

A desirable pivot choice

• select the entry with the largest absolute value

• in theory this depends on the original scaling of the

equations

• experimental data may need to be pre-processed

• scale the original equations so that the largest

coefficient (abs val) in each row is one

Unit I - Linear Algebra 23

Conditioning

• a measure of the sensitivity to perturbations in

parameters, e.g. due to

– data collection, or caused by

– roundoff error

• a function of the problem itself

• independent of the algorithm used to solve it

• determines the limits to attainable accuracy

Unit I - Linear Algebra 24

Stability

• the property of not ampliying errors

• a function of the algorithm used to solve a problem

• a stable algorithm + a well-conditioned problem

! the right answer

BUT what does well-conditioned mean?

Unit I - Linear Algebra 25

Digression: vector and matrix norms

• how to compare ‘closeness’ of two vectors x & y?

• look at

• need concept of length or magnitude or norm ||x|| of
a vector x....

• vector norm properties:
 (1) ||x||>0 all x!0 (2) ||ax|| = |a| ||x|| (3) ||x+y||$||x||+||y||

• let the vector be n-dimensional x = (x1, ... ,xn)

Unit I - Linear Algebra 26

Digression: vector and matrix norms

• the vector p-norms (Lp norms) are defined by

• ||x||2 is the usual Euclidean norm

• is another way of viewing the 2-norm

Unit I - Linear Algebra 27

Digression: vector and matrix norms

• Matlab has a built-in vector p-norm function:
norm(x,p)

• convergence of a vector sequence is independent
of which p-norm is used to check

– see Matlab example in normcompare

• L2 norm is most often used

•

• L" norm is useful when computationally challenged

• what about matrix norms?

Unit I - Linear Algebra 28

Digression: vector and matrix norms

• y=Ax transforms vector x into y
– A rotates and/or stretches x

• consider and compare the effect of A on a unit
vector x [i.e. x so that ||x||2 = 1]

• the ‘largest’ Ax value is a measure of the geometric
effect of the transformation A

• the L2 norm of A is

• ||A||2 is not easy to calculate

• also called the spectral norm of A because

 where is an eigenvalue

 of

Unit I - Linear Algebra 29

Digression: vector and matrix norms

• two other useful and easier-to-calculate matrix
norms...

• column sum norm

• row sum norm

• Matlab has built-in matrix norm function norm(A,p)

• ||A|| satisfies vector norm properties PLUS...

 and, in particular,

Unit I - Linear Algebra 30

Quantifying inaccuracy: the residual

• is a numerical solution to Ax = b

• define residual r to represent the error

• then relative error

implies the relative residual also

• B U T not the converse.....

Unit I - Linear Algebra 31

The residual

 the added term = zero

So

And so [eqn 1]

Also Ax = b gives

 [eqn 2]

Unit I - Linear Algebra 32

The residual

Combining eqns 1 & 2:

• k(A) = ||A|| ||A-1|| is called the condition number of A

• it is possible for the relative error to be large even when r « 1,
e.g. when k(A) » 1

• an ill-conditioned problem has a large condition number

• so converse statement is false, i.e. a small residual does not
guarantee accuracy for an ill-conditioned problem

Unit I - Linear Algebra 33

Condition number

• k(A) is a measure of the sensitivity of x^ to
perturbations in A or b

•

• k(A) can be measured with any p-norm

• k(A) is a mathematical property of the coefficient
matrix A

• in exact math a singular matrix has

• k(A) is an indication of how close a matrix is to
being numerically singular

• any algorithm will produce a solution that is
sensitive to perturbations in A or b if k(A) is large

• large k(A).....bad problem

Unit I - Linear Algebra 34

Condition number

• when k(A) is large the residual r is useless to
assess accuracy of x^

• when k(A)~1 the residual r is a good measure of
the accuracy of x^

• Matlab has a built-in function: cond(A)

• suppose the coefficients in A are not known
exactly, so we’re really solving (A+E)x=b

Unit I - Linear Algebra 35

Condition number

• is the perturbed A matrix

• the computed solution is so that

• the exact solution is

• we want to know how big is ?

•

• so and taking norms

Unit I - Linear Algebra 36

Condition number

• the final equation:

• condition number scales the largest relative error in
the solution to relative error in the matrix
coefficients

• e.g. if ||E|| / ||A|| ~10-4 and k(A)=1000 then x^ may
have only one digit accuracy

• Matlab tries to warn when cond(A) is large

Unit I - Linear Algebra 37

Factorization methods

• disadvantage of Gaussian elimination
– all righthand side bjs must be known in advance

• LU decomposition keeps track of the steps in
Gaussian elimination (book-keeping)

– the result can be applied to any future b required

• A is decomposed or factorized as A=LU
– L lower triangular

– U upper triangular

• why do this?

Unit I - Linear Algebra 38

LU factorization

• A = LU, L lower triangular, U upper triangular

• A x = b becomes LUx = b, or equivalent to

• Ly = b solved by forward-substitution, followed

by

• Ux = y solved by back-substitution

• it isn’t necessary to record the interim y vector

– it’s temporary

Unit I - Linear Algebra 39

LU factorization

• U is what would have been obtained by Gaussian
elimination and ...

• L records the information necessary to undo the
elimination steps

• the two interim systems are trivial to solve since
both are triangular

• work effort goes into the factorization steps to get L
and U

• how to do this?

Unit I - Linear Algebra 40

LU factorization: the book-keeping

• first assume no pivoting is required

• steps in Gaussian elimination involve pre-
multiplication by elementary matrices

– these are trivially invertible

– no flops required, only inspection and book-keeping

• A = (R1
-1· R1) · A = ... =

 = (R1
-1· R2

-1 · R3
-1 ...· ...R3· R2 · R1) · A

 = (R1
-1· R2

-1 · R3
-1...) · (...R3· R2 · R1 · A)

 = L U

• L and U
– can be built up by inspection

– can occupy the same storage location as the original A (in-
situ)

Unit I - Linear Algebra 41

• entries for U are simply obtained from the Gaussian
elimination

• entries for L are the negatives of the multipliers in the
row transformation for each step

– if the step is Rj % Rj + aRi then -a is the entry in Lij

• LU is not unique
– factors can be re-arranged between L & U

– represents the effect of using different Rj % cRj which puts a
1/c entry in the Ljj

LU factorization: the book-keeping

Unit I - Linear Algebra 42

LU factorization: example

Find an LU factorization [by hand] for

Unit I - Linear Algebra 43

Find two different LU factorizations [by hand] for

LU is not unique: example

Unit I - Linear Algebra 44

• LU may not exist at all
– if there is a zero pivot demanding a row interchange

– can factorize as A = P-1LU = PTLU

– P records the effects of row permutations

– so PA = LU

• in-situ book-keeping is still feasible
– but becomes more complicated

– in principle a row-permuted version of A is factorized to LU,
imagining that the required row interchanges are known in
advance !

– in practice you have to keep track of the permutations in P
as they are done "

What about pivoting?

Unit I - Linear Algebra 45

LU with pivoting: example

Find an LU factorization [by hand] with pivoting for

Unit I - Linear Algebra 46

• [Lp,U] = lu(A) returns
– upper triangular U

– permuted lower triangular Lp = P-1L

• [L,U,P] = lu(A) returns
– upper triangular U

– lower triangular L

– permutation matrix P so that...PA = LU

LU factorization in Matlab

Unit I - Linear Algebra 47

LU factorization in Matlab

• Matlab backslash \ can recognize a permuted

triangular matrix and use appropriate(ly

inexpensive) methods to solve the system

– there is no need for explictly having P

– you can write x = U\(L\b) and avoid the creation of a

permanent scratch vector

– of course x = A\b will (if deemed the most efficient

available method) also use LU factorization without

explicitly giving the L and U matrices (somewhat

blackbox?)

Unit I - Linear Algebra 48

Crout’s algorithm

• alternative method to find the L & U matrices

• write out A = LU with unknowns for the non-zero
elements of L & U

• equate entries in the n"n matrix equation

– gives n2 equations in n2 + n unknowns

• underdetermined so n unknowns are arbitrary
– choose say the n diagonal entries on L to be 1

– shows that the LU decomposition is not unique

• Crout’s (clever) algorithm
– re-write the n2 equations in a carefully chosen order so

that....

– elements of L and U can be found one-by-one very simply

– no more difficult than the process of back-substitution

Unit I - Linear Algebra 49

Crout’s algorithm

L and U can be built

up in the storage

location used for A

algorithm is not

stable without

pivoting, but that can

be handled as for

Gaussian elimination

also called Doolittle’s

method

a special case gives

a highly valuable

method

Unit I - Linear Algebra 50

Positive definite matrices

• a matrix A is positive definite if vTAv > 0 for all

vectors v ! 0

– <v|w> defined by vTAw is a valid inner product if and only

if A is pos. def.

– the inner product is induced by the matrix A

• a matrix is positive definite if and only if all its

eigenvalues are positive

• a pos. def. matrix A has

– all positive entries on the main diagonal [to show: apply

vTAv > 0 with the vectors (1,0,...,0), (0,1,0,...,0) etc.]

– the largest entry (in abs val.) on the main diagonal

– det (A) > 0 so it is always invertible

– a unique square root matrix B so that B2 = A

Unit I - Linear Algebra 51

Diagonally dominant matrices

• A is diagonally dominant if:

|aii| > #|aij|, i ! j, i = 1, ... n

• a diagonally dominant matrix is positive definite if it

is:

– symmetric and

– has all main diagonal entries positive

• ...but the converse is false

– there are pos. def. matrices that are not diagonally

dominant [find one - see slide 55]

– there are pos. def. matrices that are diagonally dominant

and not symmetric [any one with all positive eigenvalues]

Unit I - Linear Algebra 52

Symmetric positive definite matrices

• there are many applications of symm. pos. def.

matrices:

– solution of partial differential equations ... heat conduction,

mass diffusion etc (Poisson and Laplace equations)

– analysis of stress

– linear regression models

– optimization problems

• symmetric pos. def. linear systems

– are not esoteric

– are not unusual

– have a particularly efficient method for solution....

Unit I - Linear Algebra 53

Cholesky LU decomposition

• the Cholesky LU factorization of a symmetric pos. def.
matrix A is:

– A = L LT (more common) or equivalently...

– A = UT U (as done in Matlab)

• use it to solve a symmetric pos. def system Ax=b

• how to get L (or U)?
– write out the factorization and solve for the values [special

case of Crout’s method]

– only (n2+n)/2 equations and unknowns

– the positive definiteness of A guarantees the solution can be
obtained (no bad square roots)

– see cholesky.m for an implementation

Unit I - Linear Algebra 54

Cholesky factorization: example

Find the Cholesky factorization of

Unit I - Linear Algebra 55

Cholesky: numerical comments

• Cholesky is a stable algorithm without pivoting

• factor of two faster than the alternatives

• improved storage requirements
– U and L use the same values

– these can be stored in A

• the chol function in Matlab checks the form of A first
and returns an error if it isn’t symmetric pos. def.

– write U = chol(A)

• backslash operator \ will use Cholesky preferentially
if appropriate for the matrix

Unit I - Linear Algebra 56

Cholesky: Matlab example

• A is symm. pos. def. but NOT diagonally dominant

• A = pascal(5);

• U=chol(A); then take ...

• A(5,5) = 69 to destroy pos. definiteness

• see if it still works

Unit I - Linear Algebra 57

Iterative improvement

• floating point arithmetic limits precision possible

• for large systems or ill-conditioned small systems
precision is generally far worse than eps

– direct methods accumulate roundoff errors

– these are magnified according to the degree of ill-
conditioning

– loss of 2-3 significant digits isn’t unusual even for well-
behaved systems

• iterative improvement will get your solution back to
machine precision efficiently and effectively

Unit I - Linear Algebra 58

Iterative improvement

• suppose
– x is the (unknown) exact solution of Ax = b

– x+&x is a calculated (inexact) solution with unknown error &x

• substitute in original equation:
A(x+&x) = b+&b [...eqn 1]

• and subtract:
A &x = &b [...eqn 2]

• eqn [1] gives:
&b = A(x+&x) - b [...eqn 3]

• both terms on the rhs of [3] are known, so we can:
– use [3] to get &b

– and use this in [2] to solve for &x

Unit I - Linear Algebra 59

Iterative improvement

Unit I - Linear Algebra 60

Iterative improvement

• LU factorization of the original system Ax = b can
be used to solve [2]:

A &x = LU &x = &b to get &x

• then subtract &x from x+&x to get an improved
solution

• repeat this method as necessary till &x ~ eps

Unit I - Linear Algebra 61

Iterative methods: Jacobi

• write A = L + D + U:

– D has the diagonal elements of A and...

– L and U are zero-diagonal lower and upper triangular

• then Ax=b is (L+D+U)x =b [...eqn 1]

• so Dx = b - (L+U)x [...eqn 2]

• given xi obtain xi+1 by solving [2] with x = xi:

 xi+1 = - D-1(L+U)xi + D-1b [...eqn 3]

• J = D-1(L+U) is called the iteration matrix

– calculating D-1 is trivial since D is diagonal

Unit I - Linear Algebra 62

Jacobi: convergence

• re-arrange [1] for (L+U)x = b - Dx

• then D-1(L+U)x = D-1b - x [...eqn 4]

• the (i+1)th error term is

xi+1 - x = [D-1b - D-1(L+U)xi] - x subst. xi+1 from [3]

 = - D-1(L+U)xi + [D-1b - x] re-arranging

 = - D-1(L+U)xi + [D-1(L+U)x] subst. from [4]

 = - D-1(L+U) (xi - x)

 = - J (xi - x)

• the error is expressed in terms of the iteration matrix J

– the eigenvalues of J are a good measure of convergence rate

– convergence fails if any eigenvalue of J has magnitude $ 1

Unit I - Linear Algebra 63

Jacobi: example
Use Jacobi iteration to solve Ax=b with

Unit I - Linear Algebra 64

Gauss-Seidel method

• an alternative iterative method to Jacobi

• as for Jacobi the previous x attempt is used in the

original equations (xi) to produce a better estimate

for the solution (xi+1)

– in Jacobi the complete vector of solutions is obtained

before substituting to get the next iterate

– in Gauss-Seidel each component of xi+1 is substituted

as soon as it is obtained, before solving for the next

component of xi+1

• expressed in matrix form the difference in these

two methods becomes transparent

Unit I - Linear Algebra 65

Gauss-Seidel method

• Ax=b as (L+D+U)x =b [...eqn 1]

• then (L+D)x = b - Ux [...eqn 2]

• given xi obtain xi+1 by solving [2] with x = xi:

 xi+1 = - (L+D)-1U xi + (L+D)-1b [...eqn 3]

• G = (L+D)-1U is the iteration matrix

• the (i+1)th error term is xi+1 - x = - G (xi - x)

• convergence fails if any eigenvalue of G has

magnitude $ 1

Unit I - Linear Algebra 66

Gauss-Seidel: example

Use G-S iteration to solve the system on slide 63. Calculate the

eigenvalues of the iteration matrices and compare.

Unit I - Linear Algebra 67

Jacobi’s method: motivation

• equations may need to be re-arranged so they are diagonally
dominant:

 6x1 - 2x2 + x3 = 11 6x1 - 2x2 + x3 = 11

 x1 + 2x2 - 5x3 = -1 becomes -2x1 + 7x2 + 2x3 = 5

 -2x1 + 7x2 + 2x3 = 5 x1 + 2x2 - 5x3 = -1

• ‘solve’ for each variable in succession from each equation

x1 = 1.8333 + 0.3333x2 - 0.1667x3

 x2 = 0.7143 + 0.2857x1 - 0.2857x3

 x3 = 0.2000 + 0.2000x1 + 0.4000x2

• this is the basis of the iteration equation to improve the ith vector

x1
(i+1) = 1.8333 + 0.3333x2

(i) - 0.1667x3
(i)

 x2
(i+1) = 0.7143 + 0.2857x1

(i) - 0.2857x3
(i)

 x3
(i+1) = 0.2000 + 0.2000x1

(i) + 0.4000x2
(i)

Unit I - Linear Algebra 68

Gauss-Seidel method: motivation

• all x1, x2 and x3 are improved before the new values substituted
together in the iteration equation to generate the new iterate

• this approach might be useful for parallel processing, but
convergence is improved anyway by using the improved x
values as soon as they are available

• the iteration equations look like this now:

 x1
(i+1) = 1.8333 + 0.3333x2

(i) - 0.1667x3
(i)

 x2
(i+1) = 0.7143 + 0.2857x1

(i+1) - 0.2857x3
(i)

 x3
(i+1) = 0.2000 + 0.2000x1

(i+1) + 0.4000x2
(i+1)

• compare these versions to the matrix equations and you’ll see
the motivation

• with diagonal dominance both methods will converge

• without diagonal dominance one, or both, of them may diverge

• if both methods converge then G-S will converge more quickly
than J

Unit I - Linear Algebra 69

Calculating the error...revisited

• the error on the (i+1) iteration is 'n+1 = - G 'n

– where G is the iteration matrix

• 'n+1 = - G 'n = - G(-G 'n-1) = G2 'n-1 = ... = (-G)n+1 '0

• so if Gn (0 (zero matrix) then 'n (0

• the key to understanding this condition is the
eigenvalue decomposition of G:

G = UDU-1

– the columns of U consist of eigenvectors of G and...

– D is a diagonal matrix of eigenvalues of G

• then Gn = UDnU-1

• if all the eigenvalues of G have magnitude < 1 then
Dn (0 and consequently Gn (0

Unit I - Linear Algebra 70

• suppose T: V (V is a linear operator

• a vector v)V for which T(v) = !v is called an

eigenvector of T with eigenvalue [scalar] !

• if T is defined by multiplication with a square matrix
A we have Av = !v

• an n"n matrix has at most n distinct eigenvalues

• eigenvectors corresponding to distinct

eigenvalues are linearly independent

• if ! is an eigenvalue of an invertible matrix A then

and 1/ ! is an eigenvalue of A-1

Digression: eigenvalues and eigenvectors

Unit I - Linear Algebra 71

• v = 0 is obviously a possible solution of [A - !I]v = 0
but not very interesting

– the zero vector is technically an eigenvector of any matrix
since A0 = !0 for any !

• what about non-zero solutions?

• a non-zero solution of [A - !I]v = 0 exists if and only
if the matrix A - !I is not invertible

– otherwise we could invert A - !I and get the unique
solution v = [A - !I]-10 = 0, i.e. only the zero solution

• equivalently we have non-zero eigenvectors if and
only if the rank of A - !I < nor

• equivalently we want: det(A - !I) = 0

Digression: eigenvalues and eigenvectors

Unit I - Linear Algebra 72

• det(A - !I) = 0 is the characteristic equation of A

– it’s a polynomial of degree n if A is n"n

– its solutions give all the eigenvalues !

• the algebraic multiplicity of !i is the number of times

the eigenvalue !i is repeated as a root of the

characteristic equation

– so (! - !i)
k is a repeated factor k times

• once we know all the !1, !2, !3,..... [solve for them]

we take each one in turn and find the corresponding

eigenvector(s) v by solving the linear system

[A - !iI]v = 0

Digression: eigenvalues and eigenvectors

Unit I - Linear Algebra 73

• if v and w are eigenvectors then so is any linear
combination kv+w with the same eigenvalue:

A(kv) = k(Av) = k(!v) = !(kv)

A(v+w) = Av+Aw = !v+!w = !(v+w)

• so for each eigenvalue ! the corresponding
eigenvectors span a subspace E!, called the
eigenspace of the eigenvalue !

• a complete solution consists of finding a basis
of eigenvectors for each eigenspace (e.val.)

• the geometric multiplicity of the eigenvalue ! is the
dimension of its eigenspace

• the geometric multiplicity of an eigenvalue never
exceeds its algebraic multiplicity

Digression: eigenspaces

Unit I - Linear Algebra 74

Digression: diagonalization

• not all linear operators can be represented by

diagonal matrices with respect to some basis

• a square matrix A for which there is some

[invertible] P so that P-1AP = D is a diagonal matrix

is called diagonalizable

• if P is also orthogonal (PPT = I) then A is

orthogonally diagonalizable

• you should know:

– which matrices can be diagonalized...

– how to find the appropriate P and diagonal D

– how to find an orthogonal P if it’s possible to do so

Unit I - Linear Algebra 75

Digression: diagonalization

• P consists of linearly independent eigenvectors of

A arranged as columns

• diagonal entries of D are the corresponding e.vals.

• a square matrix A is orthogonally diagonalizable if

and only if it is symmetric

– to find an orthogonal P that diagonalizes a symmetric A

– find a set of orthonormal (orthogonal unit vectors) e. vecs

for each e. val.

– orthogonality is automatic for e.vecs. corresponding to

distinct e.vals. (not repeated)

– otherwise you have to construct an orthogonal set of

e.vecs. for each repeated e.val.

Unit I - Linear Algebra 76

Eigenvalue decomposition re-visited

• the eigenvalue decomposition (EVD) for a square

matrix A gives AU = UD

• Matlab example

– A = [0 -6 -1; 6 2 -16; -5 20 -10]

• some matrices are not diagonalizable

– A = [6 12 19; -9 -20 -33; 4 9 15]

– this has a repeated degenerate eigenvalue 1 which has

only one linearly independent eigenvector

• what about rectangular matrices??

Unit I - Linear Algebra 77

Singular value decomposition

• A is rectangular (m"n, m>n)

• a singular value * and corresponding pair of

singular vectors u (m"1) and v (n"1) are related by:

Av = *u and ATu = *v

• arrange:

– the singular values on the diagonal of a matrix S and

– the corresponding singular vectors as the columns of two

orthogonal matrices U and V

• then we have AV = US and ATU = SV

Unit I - Linear Algebra 78

Singular value decomposition

• the orthogonality of U & V implies

A = USVT

• this is the singular value decomposition (SVD) of A
– U is m"m

– S is m"n

– V is n"n

– the bottom m-n rows of S are all zero

• the economy SVD eliminates the zero rows of S
– U is m"n

– S is n"n

– V is n"n

Unit I - Linear Algebra 79

Singular value decomposition

• the EVD

– for matrices representing mappings within a given v.s. (no

dimension change)

• the SVD

– analyses mappings between different v.s. with possibly

different dimensions

• the existence of the SVD is a high point in linear

algebra with 100 years history but....

– it is relatively unknown in standard math teaching and

– only recently begun to be used in numerical applications

Unit I - Linear Algebra 80

SVD: matlab

• Matlab functions for the SVD:

– svd(a) returns [U,S,V] as outputs

– svd(a,0) is the economy SVD

• Matlab illustration with A = [9 4; 6 8; 2 7]

Unit I - Linear Algebra 81

Calculating the SVD: get V

• combine the two conditions that define the u & v

vectors:
– AT (Av) = AT(*u) = * (ATu) = * (* v) = *2 v

• so ATAv = *2 v

• the singular values are the square roots of the

eigenvalues of ATA

• the columns of V (i.e. rows of VT in the SVD) are the

eigenvectors of ATA

• we can always choose orthonormal e.vecs. as long

as no e.val. is repeated

• what about U?

Unit I - Linear Algebra 82

Calculating the SVD: get U

• define the jth column of U by uj = *j
-1Avj, where vj is

the jth column of V
– A m"n, V n"n, so there are n of these m"1 columns

making U an m"m matrix

• we have AATuj = AAT(1/*j)Avj

= (1/*j)A((ATA)vj)

= (1/*j)A(*j
2vj) [vj is an e.vec of ATA]

= *jAvj

= *j
2uj

• so the same singular values are also the square
roots of the eigenvalues of AAT and....

• the eigenvectors of AAT are the columns of U

Unit I - Linear Algebra 83

Calculating the SVD: preliminary result

• this gives us a preliminary SVD

– the singular values (always real) are conventionally

arranged in descending order on the main (upper)

diagonal of S

– U and V are real if A is real

– U and V can easily be chosen to be orthogonal as long as

AAT (or equivalently ATA) has no repeated e.val.

• example A = [2 4; 1 3; 0 0; 0 0]

Unit I - Linear Algebra 84

Why are U & V orthogonal?

• ATA is symmetric and positive definite
– so is AAT

– it’s actually non-negative definite since it can have zero
eigenvalues as well as positive ones

• so ... the eigenvalues of ATA are non-negative
– can write them as *1

2, *2
2,..., *n

2 where *1
 $ *2

 $... $ *n
 $ 0

 AND....

• ATA can be orthogonally diagonalized: ATA = VDVT

– V is an n"n orthogonal matrix

– the columns of V are an orthonormal basis of eigenvectors
of ATA

– D = diag(*1
2, *2

2,..., *n
2)

Unit I - Linear Algebra 85

Calculating the SVD: U is not unique

• we know the columns of V are an orthonormal set
of e.vecs. for ATA (as we defined them to be)....

• and....the other eigenvector condition related to the
columns of U being an orthonormal set of e.vecs.
for AAT is necessary

• however....this e.vec. condition is not sufficient to
define U uniquely to give the SVD (hmm...)

• because... even for non-repeated e.vals. a unit
e.vec. is determined uniquely except for the choice
of direction

Unit I - Linear Algebra 86

Calculating the SVD: U&V are not unique

• if uj is an e.vec. then so is -uj

• so there is room for manouver with respect to the

signs chosen for V and U

• once you’ve decided on the vectors that form the

columns of V your choice for the e.vecs. that form

the columns of U is restricted

• you have to pick the correct direction for the uj so

that A = USVT is guaranteed

• as we found above this requires uj = *j
-1Avj

Unit I - Linear Algebra 87

Calculating the SVD: example

Step 1. Calculate ATA and find the e.vals:

 *1
2 = 29.8661 & *2

2 = 0.1339

Unit I - Linear Algebra 88

Calculating the SVD: example

Step 2. Find the corresponding e.vecs. of ATA:

v1 = [0.4046, 0.9145]T & v2 = [-0.9145, 0.4046]T

– e.vecs. from distinct e.vals will automatically be orthogonal

– you have to choose unit e.vecs. (two possibilities for each)

– v1 & v2 are unique up to a free choice of +/- direction

– the decision re:signs will be reflected in the signs of the U

vecs. found next

Unit I - Linear Algebra 89

Calculating the SVD: example

Step 3. Calculate the columns of U:

u1 = *1
-1Av1 = (1/5.4650) A [0.4046, 0.9145]T

 = [0.8174,0.5760]T

u2 = *2
-1Av2 = (1/0.3660) A [-0.9145,0.4046]T

 = [-0.5760,0.8174]T

Unit I - Linear Algebra 90

Calculating the SVD: example

• compare this solution to the one obtained from the
Matlab svd(a) function

• note that here a change in sign of v1 is reflected in
the sign change of u1

• the SVD is therefore not unique with respect to sign
changes of this kind

• note that u1 and u2 are e.vecs. of AAT (as expected)
but the direction is chosen to agree with the initial
decision for directions of v1 and v2

Unit I - Linear Algebra 91

Calculating the SVD: repeated eigenvalues

• suppose *j
2 is an e.val. of ATA with multiplicity k > 1

• the corresponding eigenspace also has dimension

k > 1

– this is guaranteed because ATA is pos. def.

• first select an orthonormal basis {v1, ...vk} of e.vecs. of

ATA for the columns of V corresponding to this e.val

– now we have an infinite number of possible choices for these

– let’s pick just one basis and stick with it to define a unique

orthogonal matrix V

• now what about the U matrix?

Unit I - Linear Algebra 92

Calculating the SVD: repeated eigenvalues

• we need {u1, ...uk} to be an orthonormal basis for the
eigenspace of AAT corresponding to the e.val. *j

2

– but there are an infinite number of possible choices for the

columns of U that satisfy this condition

– so this necessary condition isn’t very helpful in defining U

even when multiplicity k=2

• we must use the further restriction that relates U and
V so the SVD works: uj = *j

-1Avj

– this is applied to each of the {v1, ...vk} to get the corresponding

columns {u1, ...uk}

– the resulting U matrix will be unique

Unit I - Linear Algebra 93

Calculating the SVD: example

Step 1. Calculate ATA = 29 I and find the double

e.val *1
2 = 29.

Unit I - Linear Algebra 94

Calculating the SVD: example

Step 2. Find an orthonormal basis of e.vecs for *1
2.

We might as well take it easy and pick say:

v1 = [1 0]T& v2 = [0,1]T

– the e.space is 2-dimensional, i.e. the whole of R2 so....

– ANY two orthogonal unit vectors in R2 will work for v1 and v2

– the required choices for the U vecs will reflect whatever is

decided to use for the columns of V

Unit I - Linear Algebra 95

Calculating the SVD: example

Step 3. Calculate the columns of U:

u1 = *1
-1Av1 = (1/5.3852) A [1,0]T

 = [0.9285,-0.3714]T

u2 = *1
-1Av2 = (1/5.3852) A [0,1]T

 = [0.3714,0.9285]T

Unit I - Linear Algebra 96

SVD with repeated eigenvalues: example

• compare this solution to the one obtained from the
matlab svd(a) function

• there are sign differences again that reflect the initial
choice of V columns

• any other choice of two orthogonal unit vectors for the
columns of V would have worked, with suitable
changes to U

• with e.vals. of multiplicity >1 the SVD is not unique up
to an infinite number of variations

• u1 and u2 will always be e.vecs. of AAT but.....that
condition is useless in problems with repeated e.vals.

Unit I - Linear Algebra 97

Why the SVD?

• the number of non-zero singular values = rank(A)

• A is singular if and only if it has at least one zero

singular value

• in floating-point arithmetic if the size of the smallest

singular value *n «*1 then the matrix is close to

singular

– the L2-norm condition number for a square matrix is the

ratio *1 / *n of the max and min singular values

– this measure can be extended to rectangular matrices as a

measure of conditioning

Unit I - Linear Algebra 98

The SVD

• reveals a lot about the properties of A, especially its

numerical qualities

• can provide a solution where other methods fail

due to singularity or conditioning problems

• is valuable, powerful, and efficient for solving both

under-determined and over-determined systems

• applies universally to all matrices regardless of size

and regardless of rank

– the EVD only applies to square matrices with full-rank

eigenspaces

Unit I - Linear Algebra 99

SVD: application to data compression

• an alternative way of writing the SVD:

• we can drop the terms above r =rank(A) % n

• data storage requirements for A can be significantly
reduced in this way

Unit I - Linear Algebra 100

SVD application: data compression

• further reduction is possible by discarding the small

terms corresponding to the small singular values

– these often represent noise

• this gives important applications in image

processing, digital data compression etc.

• for example a 500"337 image (168K pixels)

(337"337 SVD (114K pixels)

(.....

(50"50 compressed SVD (2.5K pixels)

Unit I - Linear Algebra 101

SVD application: data compression

70 term SVD 50 term SVD original image
337"500 pixels

337 terms

Unit I - Linear Algebra 102

SVD application: data compression

10 term SVD 1 term SVD 30 term SVD

Unit I - Linear Algebra 103

How to use the SVD: zeroing

• an ill-conditioned system Ax = b may have a direct

solution by LU or Gauss, but this may be only a

poor approximation of the exact solution x

• zero the ‘small’ singular values in the SVD and
proceed

– i.e. give them exactly zero values

• the residual |Ax - b| may be better than that for both
– the direct solution method and

– the SVD without zeroing

Unit I - Linear Algebra 104

How to use the SVD: zeroing

• zeroing is equivalent to discarding one linear
combination of equations

• for small singular values the equation is so
corrupted by roundoff error that it is

– useless

– tends to pull the solution to infinity in a direction almost
parallel to a nullspace vector (i.e. one for which Ax = 0)

• what’s the threshold value for determining when to
zero a singular values in the SVD?

• this depends on:
– the problem (conditioning)

– the hardware

– the desired residual

– etc etc (the art of numerical methods......)

Unit I - Linear Algebra 105

SVD: solution of under-determined systems

• an under-determined system (m<n) has an (n-m)-

dimensional solution space (in general)

• the SVD will have n-m singular values with zero or

negligible size that can be zeroed

– there may also be others if there are degeneracies in the

n-m equations

• after zeroing we can apply an algorithm to find the

particular solution

• the columns of V are a basis for the null-space, so

linear combinations of these added to the particular

solution provides the solution space of the original

problem

Unit I - Linear Algebra 106

SVD: solution of over-determined systems

• an over-determined system requires a least-

squares fit to find the best fit solution

• the SVD is a valuable method to solve the least-

squares problem

– there may still be some degeneracies (close to zero s.v.’s)

– the associated columns of V correspond to x values that

are insensitive to the data

– we can zero the s.v.’s to reduce the number of free

parameters in the fit

• this topic is explored in Unit III....

