Unit |

Linear Algebra

Unit | - Linear Algebra

Linear algebra

+ direct solution methods
— Gaussian and Gauss-Jordan elimination with pivoting
— matrix factorizations (LU, Cholesky & QR)
quantifying inaccuracy
— conditioning
* iterative solution methods
— Jacobi & Gauss-Siedel
— iterative improvement
* over-determined systems
— singular value decomposition
+ finding eigenvalues

Unit | - Linear Algebra

Tasks of computational linear algebra

Solution of a linear system A-x = b

e Ais square coefficient matrix

¢ bis aknown vector of constants (or multi-vectors)

e xis an unknown solution vector
Inverse of At

e equivalent of first task with n unit basis vectors as b’s
Eigenvalues A-x = Ax

¢ extremely valuable for many applications
Determinant det(A)

. rarely needed or useful

Unit | - Linear Algebra

Linear systems: mathematical facts

* m equations and n unknowns

* n=m has a unique solution if

— no row is a linear combination of the others (row
degeneracy), or

— no column is a linear combination of the others (column
degeneracy)

* non-singular systems have a unique solution
* mathematically these statements are exact
* but numerically.....

Unit | - Linear Algebra 4

Linear system: numerical issue

If a system is too close to linear dependence
¢ an alogorithm may fail altogether to get a solution

. round off errors can produce apparent linear dependence
at some point in the solution process
* the numerical procedure will fail totally

Unit | - Linear Algebra

Linear systems: numerical issue

If a system is too close to linear dependence
¢ an algorithm may still work but produce nonsense
¢ accumulated roundoff errors can swamp the solution
¢ very close cancellations occur in close-to-singular systems
e particularly if n large
. not algorithmic failure, but answer is (wildly) incorrect

¢ can confirm error by direct substitution in original
equations

Unit | - Linear Algebra 6

When is sophistication necessary?

sophisticated methods can detect and correct
numerical pathologies
rough guide for a not-too-singular nxn system

— n<20..50 single precision

— n<200...300 double precision

— n=1000 ok if equations are sparse (special technique

takes advantage of sparseness)

close-to-singular can be a problem even for very
small systems

Unit | - Linear Algebra 7

Under-determined system

m<n, or m=n with degenerate equations
fewer equations than unknowns
may be no solution, or

may be an infinite number of solutions

- particular solution (x,) + linear combination of n-m vectors
in the nullspace of A (i.e. A-x=0)

— this becomes an optimization problem

Unit | - Linear Algebra 8

Over-determined system

m > n and not degenerate

inconsistent (no solution)

may be derived from large experimental datasets
— experimental errors

the best compromise solution might be required
— closest to satisfying all equations
— requires quantification of ‘closeness’ to correct solution

— sum of squares of differences between left and right hand
sides is minimized (linear least squares problem)

— singular value decomposition is a powerful technique

Unit | - Linear Algebra 9

Solution techniques for linear systems

direct methods
— predictable number of steps
iterative methods
— converge in as many steps as necessary

— useful when the battle against loss of significance is being
lost (n large and/or close to singular)

combination
— direct solution then improved by iteration
— useful for close-to-singular systems

Unit | - Linear Algebra 10

Back and forward substitution

an upper triangular system Ux = b has u; = 0 i>]
— easily solved by back substitution
— Xy Xp.q, .-, Xq SUCCESSIVElY
a lower triangular system Lx = b has I; = 0 j>i
— easily solved by forward substitution
- Xq, Xy ..o, X, SUCCESSIVElY
triangular systems are numerically straightforward

Unit | - Linear Algebra "

Direct methods

tackle a general system Ax=b by

....transforming it to a triangular system or some
combination of triangular systems

numerical issues can occur in the transformation
steps

Unit | - Linear Algebra 12

Matlab methods

Matlab has the handy-dandy backslash operator
to solve a linear system Ax=b write x = A\b
looks like a matrix inverse but it isn’'t

various approaches are used intelligently according
to characteristics of the system

Matlab recognizes

— atriangular system and applies a simple substitution

algorithm

— apermuted triangular system and unpermutes it first
— specialized types of systems
— potential numerical problems

Unit | - Linear Algebra 13

Gauss-Jordan elimination: Ax=b

PRO
— efficient method for matrix inversion

— produces both the solution(s), for (multiple) b;, and the
inverse A

— numerically stable if pivoting is used
— straightforward, understandable method
CON
- all b;s must be stored and manipulated simultaneously

— three times slower than alternatives when inverse is not
required
— inverse matrix prone to roundoff error

Unit | - Linear Algebra 14

Row operations vs....

inverse matrix A-* and solutions X; can be built up in
the storage locations of A and b; respectively
elementary row operations correspond to pre-
multiplication by elementary matrices:
Ax=b
(R3*Ry*R;*A)-x=..R;"R,"R;-b
(I)-x=..Ry-R,"R, - b
x=..R;*R,"R; b

x can be built-up in stages since the R matrices are
multiplied in the order of acquisition

Unit | - Linear Algebra 15

... column operations

elementary column operations correspond to post-
multiplication by elementary matrices:
Ax=b
A-C,-C/1-x=b
A-C,-C, C,1-CyTx=b
(A°C, Cy Cyu) (CsT-C1-C) x=b
(1) (-.C3"- G- Cy") - x=b
X=C,"Cy Cy..'b
the C matrices must be stored until the last step
applied to b in the reverse order of acquisition

a fundamental computational difference between
elementary row and column operations

Unit | - Linear Algebra 16

1.

Gauss-Jordan elimination

augmented matrix A'=[A|by |- |b; | In]
operations which do not change the solutions

Replace a row of A’ by a linear combination of itself and
any other row(s).

2. Interchange two rows of A’.
3. Interchange two columns of A and corresponding rows of

b; and x.
basic G-J elimination uses only operation #1 but

Unit | - Linear Algebra 17

The need for pivoting

.... fails mathematically when a zero pivot is
encountered

and fails numerically with a too-close-to-zero pivot
the fix is partial pivoting

— use operation #2 to place a desirable pivot entry in the
current row

— usually sufficient for stability

using operation #3 as well gives full pivoting

Unit | - Linear Algebra 18

Encountering a zero pivot

pivoting is essential to avoid total failure of the
algorithm if you run into a zero pivot

try Ax=b with
2 4 -2 -2 —4
1 2 4 -3 5
A= 3 5 5 - =1~
—1 1 G —3 T
Unit | - Linear Algebra 19

Choosing the pivot entry

+ can choose from elements that are both:
— on rows below (or on) the one that is being normalized
— on columns to the right (or on) the one that is about to be
eliminated
* partial pivoting
— restricts the pivot choices to the column being eliminated

— easier than full pivoting because permutations of the
vector elements don’t need to be recorded

— almost as good numerically as full pivoting

Unit | - Linear Algebra 20

Example: the value of pivoting

pivoting can be essential to avoid inaccuracy
illustrate using the toy computer with 4 significant
digits to exaggerate the effect

try Ax=b with

0.000L 0.5 Jos
‘4_{ 04 4).3} b*{o.l}

Unit | - Linear Algebra 21

A desirable pivot choice

» select the entry with the largest absolute value

» in theory this depends on the original scaling of the
equations

* experimental data may need to be pre-processed

» scale the original equations so that the largest
coefficient (abs val) in each row is one

Unit | - Linear Algebra 22

Conditioning

a measure of the sensitivity to perturbations in
parameters, e.g. due to

— data collection, or caused by

— roundoff error

a function of the problem itself
independent of the algorithm used to solve it
determines the limits to attainable accuracy

Unit | - Linear Algebra 23

Stability
» the property of not ampliying errors
+ afunction of the algorithm used to solve a problem

* astable algorithm + a well-conditioned problem
— the right answer

BUT what does well-conditioned mean?

Unit | - Linear Algebra 24

Digression: vector and matrix norms

how to compare ‘closeness’ of two vectors x & y?
look at
[z — #l|
e

need concept of length or magnitude or norm ||x|| of
a vector X....

vector norm properties:

(M 1IX|[>0 all x#0 (2) [lax|| = a] [Ix]| (3) [Ix+yll<[Ix]|*Ilyl|

let the vector be n-dimensional x = (x4, ... ,X;)

<4

Unit | - Linear Algebra 25

Digression: vector and matrix norms

. the vector p-norms (L, norms) are defined by

"
el = 3l
i=1

n 1/2
2
lelle = (Zm)
i=1
n ifp
I (Zw)
i=1

[zl = max(lay], -, |zn])
. [Ix]], is the usual Euclidean norm
. [lz]]la = wazTx isanother way of viewing the 2-norm
Unit | - Linear Algebra 26

Digression: vector and matrix norms

Matlab has a built-in vector p-norm function:
norm(x,p)
convergence of a vector sequence is independent
of which p-norm is used to check
— see Matlab example in normcompare
L, norm is most often used
[z < [Jzll2 < |||k

L., norm is usetul when computationally challenged
what about matrix norms?

Unit | - Linear Algebra 27

Digression: vector and matrix norms

» y=Axtransforms vector x into y
— Avrotates and/or stretches x
» consider and compare the effect of A on a unit
vector x [i.e. x so that ||x||, = 1]
» the ‘largest’ Ax value is a measure of the geometric
effect of the transformation A

+ thel,normof Ais ||All2 = Huhaxl [|Az||2
T|ja=

* ||A]], is not easy to calculate

« also called the spectral norm of A because
[|4]l2 = v/max(A;) where A is an eigenvalue
of ATA

Unit | - Linear Algebra 28

Digression: vector and matrix norms

two other useful and easier-to-calculate matrix
norms...

m

llAll: = max > lai;| column sum norm
1<i<n —
27?’1
4]0 = 15}%);2 le;;| row sum norm
p
Matlab has built-in matrix norm function norm(A,p)

||A]| satisfies vector norm properties PLUS...
[|AB|| < ||4]||B]| and, in particular, ||Az|| < ||A]|||z||

Unit | - Linear Algebra 29

Quantifying inaccuracy: the residual

* ¥ is anumerical solutionto Ax=b
+ define residual r to represent the error r =b— A

. r—F
» thenrelative error E,q= I I <1
[]|
. . . . r
implies the relative residual % <1 also
B UT not the converse.....
Unit | - Linear Algebra 30

The residual

r = bh— Az
= b—Ai+ (Az —b) the added term = zero
— Az -2)
So r—% = A7lr
N -1
Andso |lz =zl = [[AT||[7| lean 1]

Also Ax=bgives ||| < [[All|l=]|

LAl

lzll = 1ol lean 2]

Unit | - Linear Algebra 31

The residual

Combining eqns 1 & 2:
e =&l A A1 Al
[—]

B < AT
e 17|

. k(A) = [|A]| [|A"]| is called the condition number of A

. it is possible for the relative error to be large even whenr « 1,
e.g. when k(A) » 1

. an ill-conditioned problem has a large condition number

. so converse statement is false, i.e. a small residual does not
guarantee accuracy for an ill-conditioned problem

Unit | - Linear Algebra 32

Condition number

* k(A) is a measure of the sensitivity of x* to
perturbations in A or b

. 1<kA) €
* k(A) can be measured with any p-norm

* k(A) is a mathematical property of the coefficient
matrix A

* in exact math a singular matrix has &(A) = >

* k(A) is an indication of how close a matrix is to
being numerically singular

any algorithm will produce a solution that is
sensitive to perturbations in A or b if k(A) is large

large k(A).....bad problem

Unit | - Linear Algebra 33

Condition number

when k(A) is large the residual r is useless to
assess accuracy of x*

when k(A)~1 the residual r is a good measure of
the accuracy of x*

L]l 1l
1 S Era < EA)
R [= B = F A
Matlab has a built-in function: cond(A)

suppose the coefficients in A are not known
exactly, so we're really solving (A+E)x=b

Unit | - Linear Algebra 34

Condition number

A = A+ E is the perturbed A matrix

the computed solution is & so that Az =5

the exact solution is Az =&

we want to know how big is = — & ?

r=A"1=A"Tds = A" A4+ A A
=(T+A Y A-—AYi=3+A1A— A&

so z —#=A"'Ez and taking norms
. AT, - IE,
llz =[] < AT IE[1E]] = 1A 1IIHAIIWHIH

Unit | - Linear Algebra 35

Condition number
=T
[E1

the final equation: (llz —2]|

2 < k(4)
Il

condition number scales the largest relative error in
the solution to relative error in the matrix
coefficients

e.g. if [|E|| / ||A]] ~10 and k(A)=1000 then x* may
have only one digit accuracy
Matlab tries to warn when cond(A) is large

Unit | - Linear Algebra 36

Factorization methods

disadvantage of Gaussian elimination

- allrighthand side b;s must be known in advance

LU decomposition keeps track of the steps in
Gaussian elimination (book-keeping)

— the result can be applied to any future b required

A is decomposed or factorized as A=LU

— L lower triangular
— U upper triangular

why do this?

Unit | - Linear Algebra 37

LU factorization

* A=LU, L lower triangular, U upper triangular

* Ax=bbecomes LUx = b, or equivalent to

*Ly = b solved by forward-substitution, followed
by

* ... Ux =y solved by back-substitution

* itisn’'t necessary to record the interim y vector
— it's temporary

Unit | - Linear Algebra 38

LU factorization

U is what would have been obtained by Gaussian
elimination and ...

L records the information necessary to undo the
elimination steps

the two interim systems are trivial to solve since
both are triangular

work effort goes into the factorization steps to get L
and U

how to do this?

Unit | - Linear Algebra 39

LU factorization: the book-keeping

+ first assume no pivoting is required
» steps in Gaussian elimination involve pre-
multiplication by elementary matrices
— these are trivially invertible
— no flops required, only inspection and book-keeping
A= (R7"R,)-A=..=

= (R Ry Ry .. Ry Ry Ry) - A
= Ry RyT-Ry™.) - (.Ry Ry Ry - A)
= L u

« LandU

— can be built up by inspection
— can occupy the same storage location as the original A (in-
situ)

Unit | - Linear Algebra 40

LU factorization: the book-keeping

entries for U are simply obtained from the Gaussian
elimination
entries for L are the negatives of the multipliers in the
row transformation for each step

if the step is R; < R, + aR, then -a is the entry in L;

LU is not unique
factors can be re-arranged between L & U
represents the effect of using different R; < cR, which puts a
1/c entry in the L

Unit | - Linear Algebra 41

LU factorization: example

1 2 -3
Find an LU factorization [by hand] for A = |: -3 -4 13 :|
2 1 -5

Unit | - Linear Algebra 42

LU is not unique: example

s o1 s What about pivoting?
Find two different LU factorizations [by hand] for A = | —4 5 0 . LU may not exist at all
4 2 18 .) . ’ .
— if there is a zero pivot demanding a row interchange
— can factorize as A = P-'LU = PTLU
— P records the effects of row permutations
- soPA=LU
* in-situ book-keeping is still feasible
— but becomes more complicated
— in principle a row-permuted version of A is factorized to LU,
imagining that the required row interchanges are known in
advance ©
— in practice you have to keep track of the permutations in P
as they are done ®
Unit | - Linear Algebra 43 Unit | - Linear Algebra 44
LU with pivoting: example o
P 9 P LU factorization in Matlab
1 2 -3
. Lp,U] = lu(A) returns
Find an LU factorization [by hand] with pivoting for A = | —3 —4 13 Lp.U] . (A)
o 1 _s — upper triangular U
- — permuted lower triangular Lp = P-'L
* [LU,P]=Iu(A) returns
— upper triangular U
— lower triangular L
— permutation matrix P so that...PA = LU
Unit | - Linear Algebra 45 Unit | - Linear Algebra 46

LU factorization in Matlab

» Matlab backslash \ can recognize a permuted
triangular matrix and use appropriate(ly
inexpensive) methods to solve the system

— there is no need for explictly having P

— you can write x = U\(L\b) and avoid the creation of a
permanent scratch vector

— of course x = A\b will (if deemed the most efficient
available method) also use LU factorization without
explicitly giving the L and U matrices (somewhat
blackbox?)

Unit | - Linear Algebra 47

Crout’s algorithm

alternative method to find the L & U matrices
write out A = LU with unknowns for the non-zero
elements of L & U
equate entries in the nxn matrix equation

gives n? equations in n? + n unknowns
underdetermined so n unknowns are arbitrary

choose say the n diagonal entries on L to be 1

shows that the LU decomposition is not unique
Crout’s (clever) algorithm

re-write the n2 equations in a carefully chosen order so
that....

elements of L and U can be found one-by-one very simply
no more difficult than the process of back-substitution

Unit | - Linear Algebra 48

Crout’s algorithm

< LandU can be built
up in the storage
location used for A

2 algorithm is not
stable without
pivoting, but that can
be handled as for
Gaussian elimination

2 also called Doolittle’s
method

2 aspecial case gives
a highly valuable
method

Unit | - Linear Algebra 49

Positive definite matrices

« amatrix A is positive definite if vTAv > 0 for all
vectors v # 0
— <v|w> defined by vTAw is a valid inner product if and only
if Ais pos. def.
— theinner product is induced by the matrix A
* amatrix is positive definite if and only if all its
eigenvalues are positive
* apos. def. matrix A has

— all positive entries on the main diagonal [to show: apply
VvTAv > 0 with the vectors (1,0,...,0), (0,1,0,...,0) etc.]

— the largest entry (in abs val.) on the main diagonal
— det (A) > 0 so it is always invertible
— aunique square root matrix B so that B2 = A

Unit | - Linear Algebra 50

Diagonally dominant matrices

» Ais diagonally dominant if:
lail > Xlayl, i#j,i=1,..n
* adiagonally dominant matrix is positive definite if it
is:
— symmetricand
— has all main diagonal entries positive
. ...but the converse is false

— there are pos. def. matrices that are not diagonally
dominant [find one - see slide 55]

— there are pos. def. matrices that are diagonally dominant
and not symmetric [any one with all positive eigenvalues]

Unit | - Linear Algebra 51

Symmetric positive definite matrices

* there are many applications of symm. pos. def.
matrices:

— solution of partial differential equations ... heat conduction,
mass diffusion etc (Poisson and Laplace equations)

— analysis of stress
— linear regression models
— optimization problems
* symmetric pos. def. linear systems
— are not esoteric
— are not unusual
— have a particularly efficient method for solution....

Unit | - Linear Algebra 52

Cholesky LU decomposition

» the Cholesky LU factorization of a symmetric pos. def.
matrix A is:
— A=LLT (more common) or equivalently...
— A=UTU (as done in Matlab)
* use it to solve a symmetric pos. def system Ax=b
* howtogetL (or U)?

— write out the factorization and solve for the values [special
case of Crout’s method]

— only (n?+n)/2 equations and unknowns

— the positive definiteness of A guarantees the solution can be
obtained (no bad square roots)

— see cholesky.m for an implementation

Unit | - Linear Algebra 53

Cholesky factorization: example
731

Find the Cholesky factorizationof A= | 3 4 0
10 2

Unit | - Linear Algebra 54

Cholesky: numerical comments

» Cholesky is a stable algorithm without pivoting
» factor of two faster than the alternatives
* improved storage requirements
— UandL use the same values
— these can be stored in A
» the chol function in Matlab checks the form of A first
and returns an error if it isn’t symmetric pos. def.
— write U = chol(A)
* backslash operator \ will use Cholesky preferentially
if appropriate for the matrix

Unit | - Linear Algebra 55

Cholesky: Matlab example

11 1 1 1 11111
12 3 4 5 012 3 4
A=113 6 10 15 U=]100136
1 4 10 20 35 0001 4
1 5 15 35 70 00001

A is symm. pos. def. but NOT diagonally dominant
A = pascal(5);

U=chol(A); then take ...

A(5,5) = 69 to destroy pos. definiteness

see if it still works

Unit | - Linear Algebra 56

Iterative improvement

» floating point arithmetic limits precision possible
» for large systems or ill-conditioned small systems
precision is generally far worse than eps
— direct methods accumulate roundoff errors
— these are magnified according to the degree of ill-
conditioning
— loss of 2-3 significant digits isn’t unusual even for well-
behaved systems
» iterative improvement will get your solution back to
machine precision efficiently and effectively

Unit | - Linear Algebra 57

Iterative improvement

suppose
— xis the (unknown) exact solution of Ax = b
— x+dx is a calculated (inexact) solution with unknown error 6x

substitute in original equation:

A(x+8x) = b+db [...eqn 1]
and subtract:

Adx =0b [...eqn 2]
eqgn [1] gives:

db = A(x+6x) - b [...eqn 3]

both terms on the rhs of [3] are known, so we can:
— use [3] to get &b
— and use this in [2] to solve for dx

Unit | - Linear Algebra 58

Iterative improvement

+ &b

db

Unit | - Linear Algebra 59

Iterative improvement

LU factorization of the original system Ax = b can
be used to solve [2]:

A dx = LU &x = &b to get 6x
then subtract 6x from x+6x to get an improved
solution
repeat this method as necessary till 5x ~ eps

Unit | - Linear Algebra 60

Iterative methods: Jacobi

* writeA=L+D+U:
— D has the diagonal elements of A and...
— L and U are zero-diagonal lower and upper triangular

+ then Ax=b is (L+D+U)x =b [...eqn 1]
+ soDx=b-(L+U)x [...eqn 2]
» given xi obtain x™*' by solving [2] with x = X
x*1=-DYL+U)xi+D'b [..eqn 3]
J = DY(L+U) is called the iteration matrix
— calculating D' is trivial since D is diagonal

Unit | - Linear Algebra 61

Jacobi: convergence
* re-arrange [1] for (L+U)x = b - Dx

+ then D'(L+U)x = Db - x [...eqn 4]
+ the (i+1)th error term is
x*1 - x = [D'b - DY(L+U)X] - x subst. x™*! from [3]
=-D(L+U)x + [D'b - X] re-arranging
= - D(L+U)x + [D-Y(L+U)x] subst. from [4]
=-D(L+U) (xi-x)
=-J(x-x)

» the error is expressed in terms of the iteration matrix J
— the eigenvalues of J are a good measure of convergence rate
— convergence fails if any eigenvalue of J has magnitude = 1

Unit | - Linear Algebra 62

Jacobi: example

Use Jacobi iteration to solve Ax=b with

Gauss-Seidel method

: -1 — 4 L . .
3 2 71 71 1 * an alternative iterative method to Jacobi
A=119 _4 o b=y + as for Jacobi the previous x attempt is used in the
11 0 —4 —4 original equations (x) to produce a better estimate
for the solution (x*1)
— in Jacobi the complete vector of solutions is obtained
before substituting to get the next iterate
— in Gauss-Seidel each component of xi*! is substituted
as soon as it is obtained, before solving for the next
component of xi*!
* expressed in matrix form the difference in these
two methods becomes transparent
Unit | - Linear Algebra 63 Unit | - Linear Algebra 64
Gauss-Seidel method Gauss-Seidel: example
Use G-S iteration to solve the system on slide 63. Calculate the
. Ax=b as (L+D+U)X =b [__,eqn 1] eigenvalues of the iteration matrices and compare.
* then (L+D)x =b - Ux [...eqn 2]

« given xi obtain x™*" by solving [2] with x = xi:
x*1=.(L+D)'U xi + (L+D)"'b [...eqn 3]
G = (L+D)'U is the iteration matrix
« the (i+1)th error term is x*' - x = - G (x' - x)
» convergence fails if any eigenvalue of G has
magnitude = 1

Unit | - Linear Algebra 65

Unit | - Linear Algebra 66

Jacobi’s method: motivation

equations may need to be re-arranged so they are diagonally
dominant:

6X4 - 2X, + X3 = 11 6x, - 2%, + X3 = 11
X; + 2X, - 55 = -1 becomes -2, + TX, + 23 =5

2%y + TX, + 2X3 =5 Xq + 2%, - 5X5 = -1
‘solve’ for each variable in succession from each equation
X, = 1.8333 +0.3333x, - 0.1667x;

X, = 0.7143 + 0.2857x, - 0.2857x,

X3 = 0.2000 + 0.2000x, + 0.4000x,
this is the basis of the iteration equation to improve the ith vector

X, = 1.8333 +0.3333x,() -0.1667x,
X, = 0.7143 + 0.2857x, - 0.2857x;
X3 ™1 =0.2000 + 0.2000x, @ +0.4000x, @
Unit | - Linear Algebra 67

Gauss-Seidel method: motivation

all x4, X, and x, are improved before the new values substituted
together in the iteration equation to generate the new iterate

this approach might be useful for parallel processing, but
convergence is improved anyway by using the improved x
values as soon as they are available

the iteration equations look like this now:

x,*1) = 1.8333 +0.3333x,() - 0.1667x;®

x,*1 = 0.7143 + 0.2857x, 1 -0.2857x, 0

X3 (*1)=0.2000 + 0.2000x,*" + 0.4000x, (+1)

compare these versions to the matrix equations and you’ll see
the motivation
with diagonal dominance both methods will converge
without diagonal dominance one, or both, of them may diverge
if both methods converge then G-S will converge more quickly
than J

Unit | - Linear Algebra 68

Calculating the error...revisited

the error on the (i+1) iteration is €., = - G ¢,
— where G is the iteration matrix
€ne1 = G & = - G(-G 8n—1) =G? €pt T T (_G)n+1 €0
so if G" — 0 (zero matrix) then ¢, — 0
the key to understanding this condition is the
eigenvalue decomposition of G:
G = UDU"!
— the columns of U consist of eigenvectors of G and...
— Dis a diagonal matrix of eigenvalues of G

then G" = UD"U-!

if all the eigenvalues of G have magnitude < 1 then
D" — 0 and consequently G — 0

Unit | - Linear Algebra 69

Digression: eigenvalues and eigenvectors

suppose T: V —V is a linear operator

a vector v&V for which T(v) = Av is called an
eigenvector of T with eigenvalue [scalar] A

if T is defined by multiplication with a square matrix
A we have Av =)v

an nxn matrix has at most n distinct eigenvalues

eigenvectors corresponding to distinct
eigenvalues are linearly independent

if A is an eigenvalue of an invertible matrix A then
and 1/ A is an eigenvalue of A1

Unit | - Linear Algebra 70

Digression: eigenvalues and eigenvectors

v =0 is obviously a possible solution of [A - Allv=0
but not very interesting

— the zero vector is technically an eigenvector of any matrix
since AO = A0 for any A

what about non-zero solutions?

a non-zero solution of [A - Allv = 0 exists if and only
if the matrix A - Al is not invertible

— otherwise we could invert A - Al and get the unique
solution v = [A - M]'0 = 0, i.e. only the zero solution

equivalently we have non-zero eigenvectors if and
only if the rank of A-Al<n.....or

equivalently we want: det(A -Al) =0

Unit | - Linear Algebra 7

Digression: eigenvalues and eigenvectors

det(A - Al) = 0 is the characteristic equation of A

— it's a polynomial of degree n if A is nxn

— its solutions give all the eigenvalues A
the algebraic multiplicity of A; is the number of times
the eigenvalue A, is repeated as a root of the
characteristic equation

— so (M- \)kis arepeated factor k times
once we know all the A, A,, A3,..... [solve for them]
we take each one in turn and find the corresponding
eigenvector(s) v by solving the linear system

[A-Allv=0

Unit | - Linear Algebra 72

Digression: eigenspaces

if vand w are eigenvectors then so is any linear
combination kv+w with the same eigenvalue:

A(kv) = k(Av) = k(Av) = A(kv)

A(vtw) = Av+AwW = Av+Aw = A(V+w)
so for each eigenvalue A the corresponding
eigenvectors span a subspace E,, called the
eigenspace of the eigenvalue A
a complete solution consists of finding a basis
of eigenvectors for each eigenspace (e.val.)
the geometric multiplicity of the eigenvalue A is the
dimension of its eigenspace
the geometric multiplicity of an eigenvalue never
exceeds its algebraic multiplicity

Unit | - Linear Algebra 73

Digression: diagonalization

not all linear operators can be represented by
diagonal matrices with respect to some basis
a square matrix A for which there is some
[invertible] P so that P-'AP = D is a diagonal matrix
is called diagonalizable
if P is also orthogonal (PPT = 1) then A is
orthogonally diagonalizable
you should know:

— which matrices can be diagonalized...

— how to find the appropriate P and diagonal D

— how to find an orthogonal P if it's possible to do so

Unit | - Linear Algebra 74

— tofind an orthogonal P that diagonalizes a symmetric A ...

Digression: diagonalization

P consists of linearly independent eigenvectors of
A arranged as columns

diagonal entries of D are the corresponding e.vals.

a square matrix A is orthogonally diagonalizable if
and only if it is symmetric

— find a set of orthonormal (orthogonal unit vectors) e. vecs

for each e. val.

— orthogonality is automatic for e.vecs. corresponding to

distinct e.vals. (not repeated)

— otherwise you have to construct an orthogonal set of

e.vecs. for each repeated e.val.

Unit | - Linear Algebra 75

Eigenvalue decomposition re-visited

the eigenvalue decomposition (EVD) for a square
matrix A gives AU = UD
Matlab example
- A=[0-6-1;62-16;-520-10]
some matrices are not diagonalizable
- A=[61219;-9-20-33;49 15]

— this has a repeated degenerate eigenvalue 1 which has
only one linearly independent eigenvector

what about rectangular matrices??

Unit | - Linear Algebra 76

Singular value decomposition

A is rectangular (mxn, m>n)
a singular value ¢ and corresponding pair of
singular vectors u (mx1) and v (nx1) are related by:
Av=ou and ATu=ov
arrange:
the singular values on the diagonal of a matrix S and

the corresponding singular vectors as the columns of two
orthogonal matrices U and V

then we have AV = US and ATU = SV

Unit | - Linear Algebra 77

Singular value decomposition
the orthogonality of U & V implies

A =USVT
this is the singular value decomposition (SVD) of A
- Uis mxm
- Sismxn
- Visnxn

— the bottom m-n rows of S are all zero
the economy SVD eliminates the zero rows of S
— Uismxn
— Sisnxn
— Visnxn

Unit | - Linear Algebra 78

Singular value decomposition

+ theEVD....

— for matrices representing mappings within a given v.s. (no
dimension change)

+ theSVD ...

— analyses mappings between different v.s. with possibly
different dimensions

» the existence of the SVD is a high point in linear
algebra with 100 years history but....
— itis relatively unknown in standard math teaching and
— only recently begun to be used in numerical applications

Unit | - Linear Algebra 79

SVD: matlab

Matlab functions for the SVD:
svd(a) returns [U,S,V] as outputs
svd(a,0) is the economy SVD

Matlab illustration with A=[94;6 8; 2 7]

Unit | - Linear Algebra 80

Calculating the SVD: get V

» combine the two conditions that define the u & v
vectors:
- AT(Av)=AT(ou)=0 (ATu)=0 (o V) = 02V
« s0ATAv=0?v
+ the singular values are the square roots of the
eigenvalues of ATA

« the columns of V (i.e. rows of VT in the SVD) are the
eigenvectors of ATA

* we can always choose orthonormal e.vecs. as long
as no e.val. is repeated

. what about U?

Unit | - Linear Algebra 81

Calculating the SVD: get U

define the jth column of U by u; = o;'Av;, where v; is
the jth column of V

— A mxn, V nxn, so there are n of these mx1 columns
making U an mxm matrix

we have AATU; = AAT(1/0)Av;
= (1/0)A((ATAV)
= (1/6;)A(cV;) Lv;is an e.vec of ATA]
= gAv,
= oy,
so the same singular values are also the square
roots of the eigenvalues of AAT and....
the eigenvectors of AAT are the columns of U

Unit | - Linear Algebra 82

Calculating the SVD: preliminary result

+ this gives us a preliminary SVD
— the singular values (always real) are conventionally
arranged in descending order on the main (upper)
diagonal of S

— UandV arereal if A is real

— Uand V can easily be chosen to be orthogonal as long as
AAT (or equivalently ATA) has no repeated e.val.

* example A=[24;13;00;00]

Unit | - Linear Algebra 83

Why are U & V orthogonal?

ATA is symmetric and positive definite
— sois AAT
— it’s actually non-negative definite since it can have zero
eigenvalues as well as positive ones
so ... the eigenvalues of ATA are non-negative
— can write them as 6,2, 6,2,..., 6,2where 6,2 0,2 ... 20,20
AND....
ATA can be orthogonally diagonalized: ATA = VDVT
— Vs an nxn orthogonal matrix

— the columns of V are an orthonormal basis of eigenvectors
of ATA
— D =diag(0% 05,..., 0,2)

Unit | - Linear Algebra 84

Calculating the SVD: U is not unique

* we know the columns of V are an orthonormal set
of e.vecs. for ATA (as we defined them to be)....

* and....the other eigenvector condition related to the
columns of U being an orthonormal set of e.vecs.
for AAT is necessary

* however....this e.vec. condition is not sufficient to
define U uniquely to give the SVD (hmm...)

* because... even for non-repeated e.vals. a unit
e.vec. is determined uniquely except for the choice
of direction

Unit | - Linear Algebra 85

Calculating the SVD: U&V are not unique

. if Y is an e.vec. then so is -U;

* so there is room for manouver with respect to the
signs chosen for V and U

* once you've decided on the vectors that form the
columns of V your choice for the e.vecs. that form
the columns of U is restricted

* you have to pick the correct direction for the u; so
that A = USVT is guaranteed
+ as we found above this requires u; = o;'Av;

Unit | - Linear Algebra 86

Calculating the SVD: example

(R en RN)
o o

Step 1. Calculate ATA and find the e.vals:
0,2=29.8661 & 0,2=0.1339

Unit | - Linear Algebra 87

Calculating the SVD: example 4=

[se R =w RNl N
=]

Step 2. Find the corresponding e.vecs. of ATA:
v, =[0.4046, 0.9145]" & v, = [-0.9145, 0.4046]"
— e.vecs. from distinct e.vals will automatically be orthogonal
— you have to choose unit e.vecs. (two possibilities for each)
— v, & v, are unique up to a free choice of +/- direction

— the decision re:signs will be reflected in the signs of the U
vecs. found next

Unit | - Linear Algebra 88

Calculating the SVD: example 4=

[se R =w RNl N
=]

Step 3. Calculate the columns of U:
u, = o, 1Av, = (1/5.4650) A [0.4046, 0.9145]T
=[0.8174,0.5760]"
u, = o, 'Av, = (1/0.3660) A [-0.9145,0.4046]"
=[-0.5760,0.8174]"

Unit | - Linear Algebra 89

Calculating the SVD: example

2 4 0.8174 —0.5760 0 5.4650 0
13] _ syt = 0.5760 08174 0 |: 0 0.3660 :| [0.4046 0.9145
00 0 0 10 0 0 —0.9145 0.4046
00 0 0 01 0 0

» compare this solution to the one obtained from the
Matlab svd(a) function

* note that here a change in sign of v, is reflected in
the sign change of u,

» the SVD is therefore not unique with respect to sign
changes of this kind

* note that u, and u, are e.vecs. of AAT (as expected)
but the direction is chosen to agree with the initial
decision for directions of v, and v,

Unit | - Linear Algebra 90

Calculating the SVD: repeated eigenvalues

suppose o is an e.val. of ATA with multiplicity k > 1
the corresponding eigenspace also has dimension
k>1

— this is guaranteed because ATA is pos. def.
first select an orthonormal basis {v,, ...v,} of e.vecs. of
ATA for the columns of V corresponding to this e.val

— now we have an infinite number of possible choices for these

— let’s pick just one basis and stick with it to define a unique
orthogonal matrix V

now what about the U matrix?

Unit | - Linear Algebra 91

Calculating the SVD: repeated eigenvalues

* we need {u4, ...u,} to be an orthonormal basis for the
eigenspace of AAT corresponding to the e.val. oj2
— but there are an infinite number of possible choices for the
columns of U that satisfy this condition
— so this necessary condition isn’t very helpful in defining U
even when multiplicity k=2
* we must use the further restriction that relates U and
V so the SVD works: u; = o;'Ay,
— this is applied to each of the {v,, ...v,} to get the corresponding
columns {uy, ...u}
— the resulting U matrix will be unique

Unit | - Linear Algebra 92

Calculating the SVD: example
5 2
A= { -2 5 }

Step 1. Calculate ATA = 29 | and find the double
e.val 0,2=29.

Unit | - Linear Algebra 93

Calculating the SVD: example A = { _52 ; }

Step 2. Find an orthonormal basis of e.vecs for ¢,2.
We might as well take it easy and pick say:
v, =[10]"& v, =[0,1]T
— the e.space is 2-dimensional, i.e. the whole of R?so....
— ANY two orthogonal unit vectors in R? will work for v, and v,

— the required choices for the U vecs will reflect whatever is
decided to use for the columns of V

Unit | - Linear Algebra 94

5

Calculating the SVD: example A = [5

Step 3. Calculate the columns of U:
u, = o, 1Av, = (1/5.3852) A [1,0]7
=[0.9285,-0.3714]7
u, = 0,7 'Av, = (1/5.3852) A [0,1]7
=[0.3714,0.9285]"

Unit | - Linear Algebra 95

SVD with repeated eigenvalues: example

A:{ 5 2} —UsyT = { 0.9285 0.3714} {5.3852 0 } {1 0}

-2 5 —0.3714 0.9285 0 5.3852 01

compare this solution to the one obtained from the
matlab svd(a) function

there are sign differences again that reflect the initial
choice of V columns

any other choice of two orthogonal unit vectors for the
columns of V would have worked, with suitable
changes to U

with e.vals. of multiplicity >1 the SVD is not unique up
to an infinite number of variations

u, and u, will always be e.vecs. of AAT but.....that
condition is useless in problems with repeated e.vals.

Unit | - Linear Algebra 96

Why the SVD?

the number of non-zero singular values = rank(A)

Ais singular if and only if it has at least one zero
singular value

in floating-point arithmetic if the size of the smallest
singular value o, «o, then the matrix is close to
singular

— the L,-norm condition number for a square matrix is the
ratio o,/ o, of the max and min singular values

— this measure can be extended to rectangular matrices as a
measure of conditioning

Unit | - Linear Algebra 97

The SVD

reveals a lot about the properties of A, especially its
numerical qualities

can provide a solution where other methods fail
due to singularity or conditioning problems

is valuable, powerful, and efficient for solving both
under-determined and over-determined systems
applies universally to all matrices regardless of size
and regardless of rank

— the EVD only applies to square matrices with full-rank
eigenspaces

Unit | - Linear Algebra 98

SVD: application to data compression

an alternative way of writing the SVD:

A = vsvT
= [ul‘---|uﬂ]diag(m,..._aﬂ)[vl|---‘vn}T
= (| |un | [o0, om] |7

T T
oYy + e 4 oYy,

crlulvr{ + -+ U,,urv:‘:
we can drop the terms above r =rank(A) = n

data storage requirements for A can be significantly
reduced in this way

Unit | - Linear Algebra 99

SVD application: data compression

further reduction is possible by discarding the small
terms corresponding to the small singular values

— these often represent noise
this gives important applications in image
processing, digital data compression etc.
for example a 500x337 image (168K pixels)
— 337x337 SVD (114K pixels)

— 50x50 compressed SVD (2.5K pixels)

Unit | - Linear Algebra 100

SVD application: data compression

SVD application: data compression

original image 70 term SVD 50 term SVD
337x500 pixels
337 terms
Unit | - Linear Algebra 101

30 term SVD 10 term SVD 1term SVD

Unit | - Linear Algebra 102

How to use the SVD: zeroing

* an ill-conditioned system Ax = b may have a direct
solution by LU or Gauss, but this may be only a
poor approximation of the exact solution x

* zero the ‘small’ singular values in the SVD and
proceed

— i.e. give them exactly zero values

+ the residual |Ax - b| may be better than that for both
— the direct solution method and
— the SVD without zeroing

Unit | - Linear Algebra 103

How to use the SVD: zeroing

zeroing is equivalent to discarding one linear
combination of equations
for small singular values the equation is so
corrupted by roundoff error that it is

— useless

— tends to pull the solution to infinity in a direction almost

parallel to a nullspace vector (i.e. one for which Ax = 0)

what'’s the threshold value for determining when to
zero a singular values in the SVD?
this depends on:

— the problem (conditioning)

— the hardware

— the desired residual

— etc etc (the art of numerical methods......)

Unit | - Linear Algebra 104

SVD: solution of under-determined systems

* anunder-determined system (m<n) has an (n-m)-
dimensional solution space (in general)

+ the SVD will have n-m singular values with zero or
negligible size that can be zeroed

— there may also be others if there are degeneracies in the
n-m equations

« after zeroing we can apply an algorithm to find the
particular solution

» the columns of V are a basis for the null-space, so
linear combinations of these added to the particular
solution provides the solution space of the original
problem

Unit | - Linear Algebra 105

SVD: solution of over-determined systems

an over-determined system requires a least-
squares fit to find the best fit solution
the SVD is a valuable method to solve the least-
squares problem

— there may still be some degeneracies (close to zero s.v.’s)

— the associated columns of V correspond to x values that
are insensitive to the data

— we can zero the s.v.’s to reduce the number of free
parameters in the fit

this topic is explored in Unit Ill....

Unit | - Linear Algebra 106

