

Tasks of computational linear algebra

Solution of a linear system $A \cdot x=b$

- A is square coefficient matrix
- $\quad b$ is a known vector of constants (or multi-vectors)
- $\quad x$ is an unknown solution vector

Inverse of A^{-1}

- equivalent of first task with n unit basis vectors as b's

Eigenvalues $A \cdot x=\lambda x$

- extremely valuable for many applications

Determinant det(A)

- rarely needed or useful

Linear systems: mathematical facts

- m equations and n unknowns
- $n=m$ has a unique solution if
- no row is a linear combination of the others (row degeneracy), or
- no column is a linear combination of the others (column degeneracy)
- non-singular systems have a unique solution
- mathematically these statements are exact
- but numerically.....

Linear system: numerical issue

If a system is too close to linear dependence

- an alogorithm may fail altogether to get a solution
- round off errors can produce apparent linear dependence at some point in the solution process
- the numerical procedure will fail totally

Linear systems: numerical issue

If a system is too close to linear dependence

- an algorithm may still work but produce nonsense
- accumulated roundoff errors can swamp the solution
- very close cancellations occur in close-to-singular systems
- particularly if n large
- not algorithmic failure, but answer is (wildly) incorrect
- can confirm error by direct substitution in original equations

When is sophistication necessary?

- sophisticated methods can detect and correct numerical pathologies
- rough guide for a not-too-singular $\mathrm{n} \times \mathrm{n}$ system
- $\mathrm{n}<20$... 50 single precision
- $n<200$... 300 double precision
- $\quad n=1000$ ok if equations are sparse (special technique takes advantage of sparseness)
- close-to-singular can be a problem even for very small systems

Under-determined system

- $m<n$, or $m=n$ with degenerate equations
- fewer equations than unknowns
- may be no solution, or
- may be an infinite number of solutions
- particular solution $\left(x_{p}\right)+$ linear combination of $n-m$ vectors in the nullspace of A (i.e. $A \cdot x=0$)
- this becomes an optimization problem

Over-determined system

- $m>n$ and not degenerate
- inconsistent (no solution)
- may be derived from large experimental datasets
- experimental errors
- the best compromise solution might be required
- closest to satisfying all equations
- requires quantification of 'closeness' to correct solution
- sum of squares of differences between left and right hand sides is minimized (linear least squares problem)
- singular value decomposition is a powerful technique

Back and forward substitution

- an upper triangular system $U x=b$ has $\mathrm{u}_{\mathrm{ij}}=0 \mathrm{i}>\mathrm{j}$
- easily solved by back substitution
- $\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}-1}, \ldots, \mathrm{x}_{1}$ successively
- a lower triangular system $L x=b$ has $\mathrm{I}_{\mathrm{ij}}=0 \mathrm{j}>\mathrm{i}$
- easily solved by forward substitution
- $\quad x_{1}, x_{2}, \ldots, x_{n}$ successively
- triangular systems are numerically straightforward

Solution techniques for linear systems

- direct methods
- predictable number of steps
- iterative methods
- converge in as many steps as necessary
- useful when the battle against loss of significance is being lost (n large and/or close to singular)
- combination
- direct solution then improved by iteration
- useful for close-to-singular systems

Direct methods

- tackle a general system $\mathrm{Ax}=\mathrm{b}$ by
-transforming it to a triangular system or some combination of triangular systems
- numerical issues can occur in the transformation steps

Matlab methods

- Matlab has the handy-dandy backslash operator
- to solve a linear system $A x=b$ write $x=A l b$
- looks like a matrix inverse but it isn't
- various approaches are used intelligently according to characteristics of the system
- Matlab recognizes
- a triangular system and applies a simple substitution algorithm
- a permuted triangular system and unpermutes it first
- specialized types of systems
- potential numerical problems

Gauss-Jordan elimination: $\mathrm{Ax}=\mathrm{b}$

- PRO
- efficient method for matrix inversion
- produces both the solution(s), for (multiple) b_{j}, and the inverse A^{-1}
- numerically stable if pivoting is used
- straightforward, understandable method
- CON
- all $b_{j} s$ must be stored and manipulated simultaneously
- three times slower than alternatives when inverse is not required
- inverse matrix prone to roundoff error

Row operations vs....

- inverse matrix A^{-1} and solutions x_{j} can be built up in the storage locations of A and b_{j} respectively
- elementary row operations correspond to premultiplication by elementary matrices:

$$
\begin{aligned}
A \cdot x & =b \\
\left(\ldots R_{3} \cdot R_{2} \cdot R_{1} \cdot A\right) \cdot x & =\ldots R_{3} \cdot R_{2} \cdot R_{1} \cdot b \\
\left(I_{n}\right) \cdot x & =\ldots R_{3} \cdot R_{2} \cdot R_{1} \cdot b \\
x & =\ldots R_{3} \cdot R_{2} \cdot R_{1} b
\end{aligned}
$$

- $\quad x$ can be built-up in stages since the R matrices are multiplied in the order of acquisition

... column operations

- elementary column operations correspond to postmultiplication by elementary matrices:
$A \cdot x=b$
$\mathrm{A} \cdot \mathrm{C}_{1} \cdot \mathrm{C}_{1}^{-1} \cdot \mathrm{x}=\mathrm{b}$
$A \cdot C_{1} \cdot C_{2} \cdot C_{2}^{-1} \cdot C_{1}^{-1} \cdot x=b$
$\left(A \cdot C_{1} \cdot C_{2} \cdot C_{3} \ldots\right) \cdot\left(\ldots C_{3}^{-1} \cdot C_{2}^{-1} \cdot C_{1}^{-1}\right) \cdot x=b$
$\left(\mathrm{I}_{\mathrm{n}}\right) \cdot\left(\ldots \mathrm{C}_{3}{ }^{-1} \cdot \mathrm{C}_{2}^{-1} \cdot \mathrm{C}_{1}{ }^{-1}\right) \cdot \mathrm{x}=\mathrm{b}$
$x=C_{1} \cdot C_{2} \cdot C_{3} \ldots \cdot b$
- the C matrices must be stored until the last step
- applied to b in the reverse order of acquisition
- a fundamental computational difference between elementary row and column operations

Unit I - Linear Algebra

Gauss-Jordan elimination

- augmented matrix $A^{\prime}=\left[A\left|b_{1}\right| \cdots\left|b_{j}\right| I_{n}\right]$
- operations which do not change the solutions

1. Replace a row of A^{\prime} by a linear combination of itself and any other row(s).
2. Interchange two rows of A^{\prime}.
3. Interchange two columns of A and corresponding rows of b_{j} and x .

- basic G-J elimination uses only operation \#1 but

Encountering a zero pivot

- pivoting is essential to avoid total failure of the algorithm if you run into a zero pivot
- try $A x=b$ with

$$
A=\left[\begin{array}{rrrr}
2 & 4 & -2 & -2 \\
1 & 2 & 4 & -3 \\
-3 & -3 & 8 & -2 \\
-1 & 1 & 6 & -3
\end{array}\right] \quad b=\left[\begin{array}{r}
-4 \\
5 \\
7 \\
7
\end{array}\right]
$$

Choosing the pivot entry

- can choose from elements that are both:
- on rows below (or on) the one that is being normalized
- on columns to the right (or on) the one that is about to be eliminated
- partial pivoting
- restricts the pivot choices to the column being eliminated
- easier than full pivoting because permutations of the vector elements don't need to be recorded
- almost as good numerically as full pivoting

Example: the value of pivoting

- pivoting can be essential to avoid inaccuracy
- \quad illustrate using the toy computer with 4 significant digits to exaggerate the effect
- try $A x=b$ with

$$
A=\left[\begin{array}{rr}
0.0001 & 0.5 \\
0.4 & -0.3
\end{array}\right] \quad b=\left[\begin{array}{l}
0.5 \\
0.1
\end{array}\right]
$$

A desirable pivot choice

- select the entry with the largest absolute value
- in theory this depends on the original scaling of the equations
- experimental data may need to be pre-processed
- scale the original equations so that the largest coefficient (abs val) in each row is one

Conditioning

- a measure of the sensitivity to perturbations in parameters, e.g. due to
- data collection, or caused by
- roundoff error
- a function of the problem itself
- independent of the algorithm used to solve it
- determines the limits to attainable accuracy

Stability

- the property of not ampliying errors
- a function of the algorithm used to solve a problem
- a stable algorithm + a well-conditioned problem
$\rightarrow \quad$ the right answer

BUT what does well-conditioned mean?

Digression: vector and matrix norms

Digression: vector and matrix norms

- how to compare 'closeness' of two vectors $x \& y$?
- look at

$$
\frac{\|x-y\|}{\|x\|} \leq \delta
$$

- need concept of length or magnitude or norm ||x\| of a vector x
- vector norm properties:
(1) $\|x\|>0$ all $x \neq 0$
(2) \|ax\| = |a| \|x\|
(3) $\|x+y\| \leq\|x\|+\|y\|$
- let the vector be n -dimensional $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$

Digression: vector and matrix norms

- Matlab has a built-in vector p-norm function: norm(x, p)
- convergence of a vector sequence is independent of which p-norm is used to check
- see Matlab example in normcompare
- $\quad \mathrm{L}_{2}$ norm is most often used
- $\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1}$
- L_{∞} norm is usetui when computationally challenged
- what about matrix norms?

Digression: vector and matrix norms

- $y=A x$ transforms vector x into y
- A rotates and/or stretches x
- consider and compare the effect of A on a unit vector x [i.e. x so that $\|x\|_{2}=1$]
- the 'largest' $A x$ value is a measure of the geometric effect of the transformation A
- the L_{2} norm of A is $\|A\|_{2}=\max _{\|x\|_{2}=1}\|A x\|_{2}$
- $\|\mathrm{A}\|_{2}$ is not easy to calculate
- also called the spectral norm of A because $\|A\|_{2}=\sqrt{\max \left(\lambda_{i}\right)}$ where λ_{i} is an eigenvalue of $A^{T} A$

Digression: vector and matrix norms

- two other useful and easier-to-calculate matrix norms...
- $\|A\|_{1}=\max _{1 \leq j \leq n} \sum_{i=1}^{m}\left|a_{i j}\right|$ column sum norm
- $\|A\|_{\infty}=\max _{1 \leq i \leq m} \sum_{i=1}\left|a_{i j}\right|$ row sum norm
- Matlab has built-in matrix norm function norm(A,p)
- \|A\| satisfies vector norm properties PLUS...
$\|A B\| \leq\|A\|\|B\|$ and, in particular, $\|A x\| \leq\|A\|\|x\|$

Quantifying inaccuracy: the residual

- \hat{x} is a numerical solution to $\mathrm{Ax}=\mathrm{b}$
- define residual r to represent the error $r=b-A \hat{x}$
- then relative error $\quad E_{\text {rel }}=\frac{\|x-\hat{x}\|}{\|x\|} \ll 1$ implies the relative residual $\frac{\|r\|}{\|b\|} \ll 1$ also
- B U T not the converse.....

The residual

$r=b-A \hat{x}$
$=b-A \hat{x}+(A x-b) \ldots$. the added term $=$ zero
$=A(x-\hat{x})$
So $\quad x-\hat{x}=A^{-1} r$
And so $\quad\|x-\hat{x}\| \leq\left\|A^{-1}|\||\| r|\right.$
[eqn 1]
Also $\mathrm{Ax}=\mathrm{b}$ gives $\quad\|b\| \leq\|A\|\|x\|$

$$
\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|} \quad \text { [eqn 2] }
$$

The residual

Combining eqns $1 \& 2$:

$$
\begin{aligned}
\frac{\|x-\hat{x}\|}{\|x\|} & \leq \frac{\left\|A^{-1}\right\|\|r\|\| \| A \|}{\|b\|} \\
E_{\text {rel }} & \leq \frac{k(A)\|r\|}{\|b\|}
\end{aligned}
$$

- $\quad k(A)=\|A\|\left\|\mathrm{A}^{-1}\right\|$ is called the condition number of A
- it is possible for the relative error to be large even when r « 1 , e.g. when $k(A)$) 1
- an ill-conditioned problem has a large condition number
- so converse statement is false, i.e. a small residual does not guarantee accuracy for an ill-conditioned problem

Condition number

- $\quad k(A)$ is a measure of the sensitivity of x^{\wedge} to perturbations in A or b
- $1 \leq k(A) \leq \infty$
- $\quad k(A)$ can be measured with any p-norm
- $k(A)$ is a mathematical property of the coefficient matrix A
- in exact math a singular matrix has $k(A)=\infty$
- $k(A)$ is an indication of how close a matrix is to being numerically singular
- any algorithm will produce a solution that is sensitive to perturbations in A or b if $k(A)$ is large
- large $k(A)$.....bad problem

Condition number

- $\hat{A}=A+E$ is the perturbed A matrix
- the computed solution is \hat{x} so that $\hat{A} \hat{x}=b$
- the exact solution is $A x=b$
- we want to know how big is $x-\hat{x}$?
- $x=A^{-1} b=A^{-1} \hat{A} \hat{x}=A^{-1}(A+\hat{A}-A) \hat{x}$

$$
\left.=\left(I+A^{-1}(\hat{A}-A)\right) \hat{x}=\hat{x}+A^{-1}(\hat{A}-A)\right) \hat{x}
$$

- so $x-\hat{x}=A^{-1} E \hat{x}$ and taking norms $\|x-\hat{x}\| \leq\left\|A^{-1}| || | E\left|\|| | \hat{x}\|=\left\|A^{-1}| || | A\right\| \frac{\|E\|}{\|A\|}\|\hat{x}\|\right.\right.$

Condition number

- when $k(A)$ is large the residual r is useless to assess accuracy of x^{\wedge}
- when $k(A) \sim 1$ the residual r is a good measure of the accuracy of x^{\wedge}

$$
\frac{1}{k(A)} \frac{\|r\|}{\|b\|} \leq E_{\text {rel }} \leq k(A) \frac{\|r\|}{\|b\|}
$$

- Matlab has a built-in function: cond(A)
- suppose the coefficients in A are not known exactly, so we're really solving ($A+E$) $x=b$

Factorization methods

- disadvantage of Gaussian elimination
- all righthand side $b_{j} s$ must be known in advance
- LU decomposition keeps track of the steps in Gaussian elimination (book-keeping)
- the result can be applied to any future b required
- A is decomposed or factorized as $A=L U$
- L lower triangular
- U upper triangular
- why do this?
- $A=L U, L$ lower triangular, U upper triangular
- $A x=b$ becomes $L U x=b$, or equivalent to
- $\mathrm{Ly}=\mathrm{b}$ solved by forward-substitution, followed by
- $U x=y$ solved by back-substitution
- it isn't necessary to record the interim y vector - it's temporary

LU factorization

LU factorization

- U is what would have been obtained by Gaussian elimination and ...
- L records the information necessary to undo the elimination steps
- the two interim systems are trivial to solve since both are triangular
- work effort goes into the factorization steps to get L and U
- how to do this?

LU factorization: the book-keeping

- entries for U are simply obtained from the Gaussian elimination
- entries for L are the negatives of the multipliers in the row transformation for each step
$-\quad$ if the step is $R_{j} \leftarrow R_{j}+a R_{i}$ then $-a$ is the entry in $L_{i j}$
- $\quad L U$ is not unique
- factors can be re-arranged between L \& U
- represents the effect of using different $R_{j} \leftarrow c R_{j}$ which puts a $1 / c$ entry in the $L_{i j}$

LU factorization: example

Find an LU factorization [by hand] for $A=\left[\begin{array}{rrr}1 & 2 & -3 \\ -3 & -4 & 13 \\ 2 & 1 & -5\end{array}\right]$

LU is not unique: example

Find two different LU factorizations [by hand] for $A=\left[\begin{array}{rrr}2 & -1 & 3 \\ -4 & 5 & 0 \\ 4 & 2 & 18\end{array}\right]$

What about pivoting?

- LU may not exist at all
- if there is a zero pivot demanding a row interchange
- can factorize as $A=P^{-1} L U=P^{\top} L U$
- $\quad \mathrm{P}$ records the effects of row permutations
- so PA = LU
- in-situ book-keeping is still feasible
- but becomes more complicated
- in principle a row-permuted version of A is factorized to $L U$, imagining that the required row interchanges are known in advance ©
- in practice you have to keep track of the permutations in P as they are done $)^{\circ}$

LU with pivoting: example

Find an LU factorization [by hand] with pivoting for $A=\left[\begin{array}{rrr}1 & 2 & -3 \\ -3 & -4 & 13 \\ 2 & 1 & -5\end{array}\right]$

LU factorization in Matlab

- $\quad[L p, U]=\operatorname{lu}(A)$ returns
- permuted lower triangular $L p=P^{-1} L$
- $\quad[L, U, P]=\operatorname{lu}(A)$ returns
- upper triangular U
- lower triangular L
- permutation matrix P so that... $P A=L U$

LU factorization in Matlab

- Matlab backslash \backslash can recognize a permuted triangular matrix and use appropriate(ly inexpensive) methods to solve the system
- there is no need for explictly having P
- you can write $x=U \backslash(\mathrm{~L} \mid \mathrm{b})$ and avoid the creation of a permanent scratch vector
- of course $x=$ Alb will (if deemed the most efficient available method) also use LU factorization without explicitly giving the L and U matrices (somewhat blackbox?)

Crout's algorithm

- alternative method to find the L \& U matrices
- write out $\mathrm{A}=\mathrm{LU}$ with unknowns for the non-zero elements of L \& U
- equate entries in the $n \times n$ matrix equation
- gives n^{2} equations in $n^{2}+n$ unknowns
- underdetermined so n unknowns are arbitrary
- choose say the n diagonal entries on L to be 1
- shows that the LU decomposition is not unique
- Crout's (clever) algorithm
- re-write the n^{2} equations in a carefully chosen order so that....
- elements of L and U can be found one-by-one very simply
- no more difficult than the process of back-substitution

Crout's algorithm

- L and U can be built up in the storage location used for A
© algorithm is not stable without pivoting, but that can be handled as for Gaussian elimination
© also called Doolittle's method
- a special case gives a highly valuable method

Positive definite matrices

- a matrix A is positive definite if $v^{\top} A v>0$ for all vectors $\mathrm{v} \neq 0$
- $<v \mid w>$ defined by $v^{\top} A w$ is a valid inner product if and only if A is pos. def.
- the inner product is induced by the matrix A
- a matrix is positive definite if and only if all its eigenvalues are positive
- a pos. def. matrix A has
- all positive entries on the main diagonal [to show: apply $v^{\top} A v>0$ with the vectors $(1,0, \ldots, 0),(0,1,0, \ldots, 0)$ etc.]
- the largest entry (in abs val.) on the main diagonal
- $\quad \operatorname{det}(A)>0$ so it is always invertible
- a unique square root matrix B so that $B^{2}=A$

Diagonally dominant matrices

- A is diagonally dominant if:
$\left|a_{i i}\right|>\sum\left|a_{i j}\right|, i \neq j, i=1, \ldots n$
- a diagonally dominant matrix is positive definite if it is:
- symmetric and
- has all main diagonal entries positive
- ...but the converse is false
- there are pos. def. matrices that are not diagonally dominant [find one - see slide 55]
- there are pos. def. matrices that are diagonally dominant and not symmetric [any one with all positive eigenvalues]

Symmetric positive definite matrices

- there are many applications of symm. pos. def. matrices:
- solution of partial differential equations ... heat conduction, mass diffusion etc (Poisson and Laplace equations)
- analysis of stress
- linear regression models
- optimization problems
- symmetric pos. def. linear systems
- are not esoteric
- are not unusual
- have a particularly efficient method for solution....

Cholesky LU decomposition

- the Cholesky LU factorization of a symmetric pos. def. matrix A is:
- $A=L L^{\top}$ (more common) or equivalently...
- $\quad A=U^{\top} U$ (as done in Matlab)
- use it to solve a symmetric pos. def system $A x=b$
- how to get L (or U)?
- write out the factorization and solve for the values [special case of Crout's method]
- only $\left(n^{2}+n\right) / 2$ equations and unknowns
- the positive definiteness of A guarantees the solution can be obtained (no bad square roots)
- see cholesky.m for an implementation

Cholesky factorization: example
Find the Cholesky factorization of $A=\left[\begin{array}{lll}7 & 3 & 1 \\ 3 & 4 & 0 \\ 1 & 0 & 2\end{array}\right]$

Cholesky: numerical comments

- Cholesky is a stable algorithm without pivoting
- factor of two faster than the alternatives
- improved storage requirements
- $\quad U$ and L use the same values
- these can be stored in A
- the chol function in Matlab checks the form of A first and returns an error if it isn't symmetric pos. def.
- write U = chol(A)
- backslash operator \backslash will use Cholesky preferentially if appropriate for the matrix

Cholesky: Matlab example
$A=\left[\begin{array}{rrrrr}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70\end{array}\right] \quad U=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 3 & 6 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$

- A is symm. pos. def. but NOT diagonally dominant
- $\quad \mathrm{A}=\operatorname{pascal}(5)$;
- $\quad \mathrm{U}=\mathrm{chol}(\mathrm{A})$; then take ...
- $\mathrm{A}(5,5)=69$ to destroy pos. definiteness
- see if it still works

Iterative improvement

- floating point arithmetic limits precision possible
- for large systems or ill-conditioned small systems precision is generally far worse than eps
- direct methods accumulate roundoff errors
- these are magnified according to the degree of illconditioning
- loss of 2-3 significant digits isn't unusual even for wellbehaved systems
- iterative improvement will get your solution back to machine precision efficiently and effectively

Iterative improvement

- suppose
- $\quad x$ is the (unknown) exact solution of $A x=b$
- $\quad x+\delta x$ is a calculated (inexact) solution with unknown error δx
- substitute in original equation:

$$
A(x+\delta x)=b+\delta b
$$

[...eqn 1]

- and subtract:
$A \delta x=\delta b$
[...eqn 2]
- eqn [1] gives:
$\delta b=A(x+\delta x)-b$
[...eqn 3]
- both terms on the rhs of [3] are known, so we can:
- use [3] to get $\delta \mathrm{b}$
- and use this in [2] to solve for δx

Iterative improvement

Iterative methods: Jacobi

- write $A=L+D+U$:
- D has the diagonal elements of A and...
- $\quad L$ and U are zero-diagonal lower and upper triangular
- then $A x=b$ is $(L+D+U) x=b \quad$ [..eqn 1]
- so $D x=b-(L+U) x$ [..eqn 2]
- given x^{i} obtain x^{i+1} by solving [2] with $x=x^{i}$:

$$
\begin{equation*}
x^{i+1}=-D^{-1}(L+U) x^{i}+D^{-1} b \tag{...eqn3}
\end{equation*}
$$

- $\quad J=D^{-1}(L+U)$ is called the iteration matrix
- calculating D^{-1} is trivial since D is diagonal
- re-arrange [1] for $(L+U) x=b-D x$
- then $D^{-1}(L+U) x=D^{-1} b-x \quad$ [...eqn 4]
- the (i+1)th error term is

$$
\begin{aligned}
x^{i+1}-x & =\left[D^{-1} b-D^{-1}(L+U) x^{i}\right]-x & & \text { subst. } x^{i+1} \text { from }[3] \\
& =-D^{-1}(L+U) x^{i}+\left[D^{-1} b-x\right] & & \text { re-arranging } \\
& =-D^{-1}(L+U) x^{i}+\left[D^{-1}(L+U) x\right] & & \text { subst. from }[4] \\
& =-D^{-1}(L+U)\left(x^{i}-x\right) & & \\
& =-J\left(x^{i}-x\right) & &
\end{aligned}
$$

- the error is expressed in terms of the iteration matrix J
- the eigenvalues of J are a good measure of convergence rate
- convergence fails if any eigenvalue of J has magnitude ≥ 1

Jacobi: example

Use Jacobi iteration to solve $\mathrm{Ax}=\mathrm{b}$ with
$A=\left[\begin{array}{rrrr}4 & 0 & -1 & -1 \\ 0 & 4 & -1 & -1 \\ 1 & 1 & -4 & 0 \\ 1 & 1 & 0 & -4\end{array}\right] \quad b=\left[\begin{array}{r}4 \\ 4 \\ -4 \\ -4\end{array}\right]$

Gauss-Seidel method

- $A x=b$ as $(L+D+U) x=b$
[...eqn 1]
- then (L+D) $x=b-U x$
[...eqn 2]
- given x^{i} obtain x^{i+1} by solving [2] with $x=x^{i}$:

$$
x^{i+1}=-(L+D)^{-1} U x^{i}+(L+D)^{-1} b \quad[\ldots \text { eqn 3] }
$$

- $G=(L+D)^{-1} U$ is the iteration matrix
- the ($\mathrm{i}+1$)th error term is $\mathrm{x}^{\mathrm{i}+1}-\mathrm{x}=-\mathrm{G}\left(\mathrm{x}^{\mathrm{i}}-\mathrm{x}\right)$
- convergence fails if any eigenvalue of G has magnitude ≥ 1

Gauss-Seidel method

- an alternative iterative method to Jacobi
- as for Jacobi the previous x attempt is used in the original equations (x^{i}) to produce a better estimate for the solution (x^{i+1})
- in Jacobi the complete vector of solutions is obtained before substituting to get the next iterate
- in Gauss-Seidel each component of x^{i+1} is substituted as soon as it is obtained, before solving for the next component of x^{i+1}
- expressed in matrix form the difference in these two methods becomes transparent

Gauss-Seidel: example

Use G-S iteration to solve the system on slide 63. Calculate the eigenvalues of the iteration matrices and compare.

Jacobi's method: motivation

- equations may need to be re-arranged so they are diagonally dominant:

$$
\begin{aligned}
6 x_{1}-2 x_{2}+x_{3} & =11 \\
x_{1}+2 x_{2}-5 x_{3} & =-1 \\
-2 x_{1}+7 x_{2}+2 x_{3} & =5
\end{aligned} \quad \text { becomes } \quad \begin{aligned}
6 x_{1}-2 x_{2}+x_{3} & =11 \\
-2 x_{1}+7 x_{2}+2 x_{3} & =5 \\
x_{1}+2 x_{2}-5 x_{3} & =-1
\end{aligned}
$$

- 'solve' for each variable in succession from each equation
$+0.3333 x_{2}-0.1667 x_{3}$
$x_{2}=0.7143+0.2857 x_{1} \quad-0.2857 x_{3}$
$x_{3}=0.2000+0.2000 x_{1} \quad+0.4000 x_{2}$
- this is the basis of the iteration equation to improve the ith vector

$$
\begin{array}{cc}
\mathrm{x}_{1}^{(i+1)}=1.8333 & +0.3333 \mathrm{x}_{2}^{(\mathrm{i})} \\
\mathrm{x}_{2}^{(i+1)}=0.7143+0.2857 \mathrm{x}_{1}^{(\mathrm{i})} & -0.1667 \mathrm{x}_{3}{ }^{(\mathrm{i})} \\
\mathrm{x}_{3}{ }^{(\mathrm{i}+1)}=0.2007 \mathrm{x}_{3}{ }^{(\mathrm{i})} \\
+0.2000 \mathrm{x}_{1}{ }^{(\mathrm{i})} & +0.4000 \mathrm{x}_{2}^{(\mathrm{i})}
\end{array}
$$

Gauss-Seidel method: motivation

- all x_{1}, x_{2} and x_{3} are improved before the new values substituted together in the iteration equation to generate the new iterate
- this approach might be useful for parallel processing, but convergence is improved anyway by using the improved x values as soon as they are available
- the iteration equations look like this now:
$\mathrm{x}_{1}{ }^{(\mathrm{i}+1)}=1.8333 \quad+0.3333 \mathrm{x}_{2}{ }^{(\mathrm{i})} \quad-0.1667 \mathrm{x}_{3}{ }^{(\mathrm{i})}$
$\mathrm{x}_{2}{ }^{(i+1)}=0.7143+0.2857 \mathrm{x}_{1}{ }^{(\mathrm{i}+1)} \quad-0.2857 \mathrm{x}_{3}{ }^{(\mathrm{i})}$
$\mathrm{x}_{3}{ }^{(\mathrm{i}+1)}=0.2000+0.2000 \mathrm{x}_{1}{ }^{(\mathrm{i}+1)}+0.4000 \mathrm{x}_{2}{ }^{(\mathrm{i}+1)}$
- compare these versions to the matrix equations and you'll see the motivation
- with diagonal dominance both methods will converge
- without diagonal dominance one, or both, of them may diverge
- if both methods converge then G-S will converge more quickly than J

Calculating the error...revisited

- the error on the (i+1) iteration is $\varepsilon_{n+1}=-G \varepsilon_{n}$
- where G is the iteration matrix
- $\varepsilon_{\mathrm{n}+1}=-\mathrm{G} \varepsilon_{\mathrm{n}}=-\mathrm{G}\left(-\mathrm{G} \varepsilon_{\mathrm{n}-1}\right)=\mathrm{G}^{2} \varepsilon_{\mathrm{n}-1}=\ldots=(-\mathrm{G})^{\mathrm{n}+1} \varepsilon_{0}$
- so if $\mathrm{G}^{\mathrm{n}} \rightarrow 0$ (zero matrix) then $\varepsilon_{\mathrm{n}} \rightarrow 0$
- the key to understanding this condition is the eigenvalue decomposition of G :

$$
\mathrm{G}=\mathrm{UDU}^{-1}
$$

- the columns of U consist of eigenvectors of G and...
- $\quad D$ is a diagonal matrix of eigenvalues of G
- then $G^{n}=U D^{n} U^{-1}$
- if all the eigenvalues of G have magnitude <1 then $\mathrm{D}^{\mathrm{n}} \rightarrow 0$ and consequently $\mathrm{G}^{\mathrm{n}} \rightarrow 0$

Digression: eigenvalues and eigenvectors

- suppose $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is a linear operator
- a vector $v \in V$ for which $T(v)=\lambda v$ is called an eigenvector of T with eigenvalue [scalar] λ
- if T is defined by multiplication with a square matrix A we have $A v=\lambda v$
- an $n \times n$ matrix has at most n distinct eigenvalues
- eigenvectors corresponding to distinct eigenvalues are linearly independent
- if λ is an eigenvalue of an invertible matrix A then and $1 / \lambda$ is an eigenvalue of A^{-1}

Digression: eigenvalues and eigenvectors

- $\quad v=0$ is obviously a possible solution of $[A-\lambda I] v=0$ but not very interesting
- the zero vector is technically an eigenvector of any matrix since $\mathrm{A} 0=\lambda 0$ for any λ
- what about non-zero solutions?
- a non-zero solution of $[A-\lambda I] v=0$ exists if and only if the matrix $A-\lambda I$ is not invertible
- otherwise we could invert $A-\lambda I$ and get the unique solution $v=[A-\lambda I]^{-1} 0=0$, i.e. only the zero solution
- equivalently we have non-zero eigenvectors if and only if the rank of $A-\lambda I<n \ldots .$. or
- equivalently we want: $\operatorname{det}(A-\lambda I)=0$

Digression: eigenvalues and eigenvectors

- $\operatorname{det}(A-\lambda I)=0$ is the characteristic equation of A
- it's a polynomial of degree n if A is $n \times n$
- its solutions give all the eigenvalues λ
- the algebraic multiplicity of λ_{i} is the number of times the eigenvalue λ_{i} is repeated as a root of the characteristic equation
- so $\left(\lambda-\lambda_{i}\right)^{k}$ is a repeated factor k times
- once we know all the $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$. . [solve for them] we take each one in turn and find the corresponding eigenvector(s) v by solving the linear system

$$
\left[A-\lambda_{i} l\right] v=0
$$

Digression: eigenspaces

- if v and w are eigenvectors then so is any linear combination $\mathrm{kv}+\mathrm{w}$ with the same eigenvalue:
$A(k v)=k(A v)=k(\lambda v)=\lambda(k v)$
$A(v+w)=A v+A w=\lambda v+\lambda w=\lambda(v+w)$
- so for each eigenvalue λ the corresponding eigenvectors span a subspace E_{λ}, called the eigenspace of the eigenvalue λ
- a complete solution consists of finding a basis of eigenvectors for each eigenspace (e.val.)
- the geometric multiplicity of the eigenvalue λ is the dimension of its eigenspace
- the geometric multiplicity of an eigenvalue never exceeds its algebraic multiplicity

Digression: diagonalization

- P consists of linearly independent eigenvectors of A arranged as columns
- diagonal entries of D are the corresponding e.vals.
- a square matrix A is orthogonally diagonalizable if and only if it is symmetric
- to find an orthogonal P that diagonalizes a symmetric $A . .$.
- find a set of orthonormal (orthogonal unit vectors) e. vecs for each e. val.
- orthogonality is automatic for e.vecs. corresponding to distinct e.vals. (not repeated)
- otherwise you have to construct an orthogonal set of e.vecs. for each repeated e.val.

Digression: diagonalization

- not all linear operators can be represented by diagonal matrices with respect to some basis
- a square matrix A for which there is some [invertible] P so that $P^{-1} A P=D$ is a diagonal matrix is called diagonalizable
- if P is also orthogonal $\left(P P^{\top}=I\right)$ then A is orthogonally diagonalizable
- you should know:
- which matrices can be diagonalized...
- how to find the appropriate P and diagonal D
- how to find an orthogonal P if it's possible to do so

Eigenvalue decomposition re-visited

- the eigenvalue decomposition (EVD) for a square matrix A gives AU = UD
- Matlab example
$-\quad A=[0-6-1$; $62-16 ;-520-10]$
- some matrices are not diagonalizable
- $\quad A=[612$ 19; -9-20-33; 49 15]
- this has a repeated degenerate eigenvalue 1 which has only one linearly independent eigenvector
- what about rectangular matrices??

Singular value decomposition

- A is rectangular ($m \times n, m>n$)
- a singular value σ and corresponding pair of singular vectors $u(m \times 1)$ and $v(n \times 1)$ are related by:

$$
A v=\sigma u \quad \text { and } \quad A^{\top} u=\sigma v
$$

- arrange:
- the singular values on the diagonal of a matrix S and
- the corresponding singular vectors as the columns of two orthogonal matrices U and V
- then we have $A V=U S$ and $A^{\top} U=S V$....

Singular value decomposition

- the orthogonality of $U \& V$ implies
A = USVT
- this is the singular value decomposition (SVD) of A
- U is $m \times m$
- $\quad S$ is $m \times n$
- V is $n \times n$
- the bottom m-n rows of S are all zero
- the economy SVD eliminates the zero rows of S
- $\quad U$ is $m \times n$
- $\quad S$ is $n \times n$
- V is $n \times n$

Singular value decomposition

- the EVD
- for matrices representing mappings within a given v.s. (no dimension change)
- the SVD
- analyses mappings between different v.s. with possibly different dimensions
- the existence of the SVD is a high point in linear algebra with 100 years history but....
- it is relatively unknown in standard math teaching and
- only recently begun to be used in numerical applications

SVD: matlab

- Matlab functions for the SVD:
- $\quad \operatorname{svd}(a)$ returns $[\mathrm{U}, \mathrm{S}, \mathrm{V}]$ as outputs
- $\quad \operatorname{svd}(a, 0)$ is the economy SVD
- Matlab illustration with $A=[94 ; 68 ; 27]$

Calculating the SVD: get V

- combine the two conditions that define the u \& v vectors:
- $\quad A^{\top}(A v)=A^{\top}(\sigma u)=\sigma\left(A^{\top} u\right)=\sigma(\sigma v)=\sigma^{2} v$
- so $A^{\top} A v=\sigma^{2} v$
- the singular values are the square roots of the eigenvalues of $A^{\top} A$
- the columns of V^{\prime} (i.e. rows of V^{\top} in the SVD) are the eigenvectors of $A^{\top} A$
- we can always choose orthonormal e.vecs. as long as no e.val. is repeated
- what about U?

Calculating the SVD: get U

- define the jth column of U by $u_{j}=\sigma_{j}^{-1} A v_{j}$, where v_{j} is the jth column of V
- A $m \times n, V n \times n$, so there are n of these $m \times 1$ columns making U an $m \times m$ matrix
- we have $A A^{\top} u_{j}=A A^{\top}\left(1 / \sigma_{j}\right) A v_{j}$

$$
\begin{aligned}
& =\left(1 / \sigma_{j}\right) A\left(\left(A^{\top} A\right) v_{j}\right) \\
& =\left(1 / \sigma_{j}\right) A\left(\sigma_{j}^{2} v_{j}\right) \quad\left[v_{j} \text { is an e.vec of } A^{\top} A\right] \\
& =\sigma_{j} A v_{j} \\
& =\sigma_{j}^{2} u_{j}
\end{aligned}
$$

- so the same singular values are also the square roots of the eigenvalues of A^{\top} and....
- the eigenvectors of $A A^{\top}$ are the columns of U

Calculating the SVD: preliminary result

- this gives us a preliminary SVD
- the singular values (always real) are conventionally arranged in descending order on the main (upper) diagonal of S
- $\quad U$ and V are real if A is real
- $\quad U$ and V can easily be chosen to be orthogonal as long as $A A^{\top}$ (or equivalently $A^{\top} A$) has no repeated e.val.
- example $A=[24 ; 13 ; 00 ; 00]$

Why are U \& V orthogonal?

- $\quad A^{\top} A$ is symmetric and positive definite
- so is $A A^{\top}$
- it's actually non-negative definite since it can have zero eigenvalues as well as positive ones
- so ... the eigenvalues of $\mathrm{A}^{\top} \mathrm{A}$ are non-negative
- can write them as $\sigma_{1}{ }^{2}, \sigma_{2}{ }^{2}, \ldots, \sigma_{n}{ }^{2}$ where $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0$ AND....
- $\quad A^{\top} A$ can be orthogonally diagonalized: $\mathrm{A}^{\top} \mathrm{A}=\mathrm{VDV}^{\top}$
- $\quad V$ is an $n \times n$ orthogonal matrix
- the columns of V are an orthonormal basis of eigenvectors of $A^{\top} A$
$-\quad D=\operatorname{diag}\left(\sigma_{1}{ }^{2}, \sigma_{2}{ }^{2}, \ldots, \sigma_{n}{ }^{2}\right)$

Calculating the SVD: U is not unique

- we know the columns of V are an orthonormal set of e.vecs. for $A^{\top} A$ (as we defined them to be)....
- and....the other eigenvector condition related to the columns of U being an orthonormal set of e.vecs. for $A A^{\top}$ is necessary
- however....this e.vec. condition is not sufficient to define U uniquely to give the SVD (hmm...)
- because... even for non-repeated e.vals. a unit e.vec. is determined uniquely except for the choice of direction

Calculating the SVD: U\&V are not unique

- if u_{j} is an e.vec. then so is $-u_{j}$
- so there is room for manouver with respect to the signs chosen for V and U
- once you've decided on the vectors that form the columns of V your choice for the e.vecs. that form the columns of U is restricted
- you have to pick the correct direction for the u_{j} so that $A=U S V^{\top}$ is guaranteed
- as we found above this requires $u_{j}=\sigma_{j}^{-1} A v_{j}$

Calculating the SVD: example

$$
A=\left[\begin{array}{ll}
2 & 4 \\
1 & 3 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Step 1. Calculate $A^{\top} A$ and find the e.vals:

$$
{\sigma_{1}}^{2}=29.8661 \& \sigma_{2}^{2}=0.1339
$$

Calculating the SVD: example $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 3 \\ 0 & 0 \\ 0 & 0\end{array}\right]$

Step 2. Find the corresponding e.vecs. of $A^{\top} A$:
$v_{1}=[0.4046,0.9145]^{\top} \& v_{2}=[-0.9145,0.4046]^{\top}$

- e.vecs. from distinct e.vals will automatically be orthogonal
- you have to choose unit e.vecs. (two possibilities for each)
- $\quad v_{1} \& v_{2}$ are unique up to a free choice of $+/$ - direction
- the decision re:signs will be reflected in the signs of the U vecs. found next

Calculating the SVD: example $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 3 \\ 0 & 0 \\ 0 & 0\end{array}\right]$
Step 3. Calculate the columns of U :

$$
\begin{aligned}
\mathrm{u}_{1}=\sigma_{1}{ }^{-1} \mathrm{~A} \mathrm{v}_{1} & =(1 / 5.4650) \mathrm{A}[0.4046,0.9145]^{\top} \\
& =[0.8174,0.5760]^{\top} \\
\mathrm{u}_{2}=\sigma_{2}{ }^{-1} \mathrm{~A} \mathrm{v}_{2} & =(1 / 0.3660) \mathrm{A}[-0.9145,0.4046]^{\top} \\
& =[-0.5760,0.8174]^{\top}
\end{aligned}
$$

Calculating the SVD: example

$$
A=\left[\begin{array}{ll}
2 & 4 \\
1 & 3 \\
0 & 0 \\
0 & 0
\end{array}\right]=U S V^{T}=\left[\begin{array}{cccc}
0.8174 & -0.5760 & 0 \\
0.5760 & 0.8174 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
5.4650 & 0 \\
0 & 0.3660 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
0.4046 & 0.9145 \\
-0.9145 & 0.4046
\end{array}\right]
$$

- compare this solution to the one obtained from the Matlab svd(a) function
- note that here a change in sign of v_{1} is reflected in the sign change of u_{1}
- the SVD is therefore not unique with respect to sign changes of this kind
- note that u_{1} and u_{2} are e.vecs. of $A A^{\top}$ (as expected) but the direction is chosen to agree with the initial decision for directions of v_{1} and v_{2}

Calculating the SVD: repeated eigenvalues

- suppose σ_{j}^{2} is an e.val. of $A^{\top} A$ with multiplicity $k>1$
- the corresponding eigenspace also has dimension k>1
- this is guaranteed because $\mathrm{A}^{\top} \mathrm{A}$ is pos. def.
- first select an orthonormal basis $\left\{\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{k}}\right\}$ of e.vecs. of $\mathrm{A}^{\top} \mathrm{A}$ for the columns of V corresponding to this e.val
- now we have an infinite number of possible choices for these
- let's pick just one basis and stick with it to define a unique orthogonal matrix V
- now what about the U matrix?

Calculating the SVD: repeated eigenvalues

- we need $\left\{\mathrm{u}_{1}, \ldots \mathrm{u}_{k}\right\}$ to be an orthonormal basis for the eigenspace of $A A^{\top}$ corresponding to the e.val. σ_{j}^{2}
- but there are an infinite number of possible choices for the columns of U that satisfy this condition
- so this necessary condition isn't very helpful in defining U even when multiplicity $k=2$
- we must use the further restriction that relates U and V so the SVD works: $u_{j}=\sigma_{j}^{-1} A v_{j}$
- this is applied to each of the $\left\{\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{k}}\right\}$ to get the corresponding columns $\left\{\mathrm{u}_{1}, \ldots \mathrm{u}_{\mathrm{k}}\right\}$
- the resulting U matrix will be unique

Calculating the SVD: example

$$
A=\left[\begin{array}{cc}
5 & 2 \\
-2 & 5
\end{array}\right]
$$

Step 1. Calculate $A^{\top} A=29 I$ and find the double e.val $\sigma_{1}^{2}=29$.

Calculating the SVD: example $A=\left[\begin{array}{cc}5 & 2 \\ -2 & 5\end{array}\right]$

Step 2. Find an orthonormal basis of e.vecs for $\sigma_{1}{ }^{2}$.
We might as well take it easy and pick say:

$$
v_{1}=[10]^{\top} \& v_{2}=[0,1]^{\top}
$$

- the e.space is 2-dimensional, i.e. the whole of R^{2} so....
- ANY two orthogonal unit vectors in R^{2} will work for v_{1} and v_{2}
- the required choices for the U vecs will reflect whatever is decided to use for the columns of V

Calculating the SVD: example $A=\left[\begin{array}{cc}5 & 2 \\ -2 & 5\end{array}\right]$

Step 3. Calculate the columns of U :

$$
\begin{aligned}
\mathrm{u}_{1}=\sigma_{1}{ }^{-1} \mathrm{~A} \mathrm{v}_{1} & =(1 / 5.3852) \mathrm{A}[1,0]^{\top} \\
& =[0.9285,-0.3714]^{\top} \\
\mathrm{u}_{2}=\sigma_{1}{ }^{-1} \mathrm{~A} \mathrm{v}_{2} & =(1 / 5.3852) \mathrm{A}[0,1]^{\top} \\
& =[0.3714,0.9285]^{\top}
\end{aligned}
$$

SVD with repeated eigenvalues: example
$A=\left[\begin{array}{cc}5 & 2 \\ -2 & 5\end{array}\right]=U S V^{T}=\left[\begin{array}{cc}0.9285 & 0.3714 \\ -0.3714 & 0.9285\end{array}\right]\left[\begin{array}{cc}5.3852 & 0 \\ 0 & 5.3852\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

- compare this solution to the one obtained from the matlab svd(a) function
- there are sign differences again that reflect the initial choice of V columns
- any other choice of two orthogonal unit vectors for the columns of V would have worked, with suitable changes to U
- with e.vals. of multiplicity >1 the SVD is not unique up to an infinite number of variations
- u_{1} and u_{2} will always be e.vecs. of $A A^{\top}$ but.....that condition is useless in problems with repeated e.vals.

Why the SVD?

- the number of non-zero singular values $=\operatorname{rank}(\mathrm{A})$
- A is singular if and only if it has at least one zero singular value
- in floating-point arithmetic if the size of the smallest singular value σ_{n} « σ_{1} then the matrix is close to singular
- the L_{2}-norm condition number for a square matrix is the ratio σ_{1} / σ_{n} of the max and min singular values
- this measure can be extended to rectangular matrices as a measure of conditioning

The SVD

- reveals a lot about the properties of A, especially its numerical qualities
- can provide a solution where other methods fail due to singularity or conditioning problems
- is valuable, powerful, and efficient for solving both under-determined and over-determined systems
- applies universally to all matrices regardless of size and regardless of rank
- the EVD only applies to square matrices with full-rank eigenspaces

SVD: application to data compression

- an alternative way of writing the SVD:

$$
\begin{aligned}
A & =U S V^{T} \\
& =\left[u_{1}|\cdots| u_{n}\right] \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right)\left[v_{1}|\cdots| v_{n}\right]^{T} \\
& =\left[u_{1}|\cdots| u_{n}\right]\left[\sigma_{1} v_{1}^{T}, \ldots, \sigma_{n} v_{n}^{T}\right]^{T} \\
& =\sigma_{1} u_{1} v_{1}^{T}+\cdots+\sigma_{n} u_{n} v_{n}^{T} \\
& =\sigma_{1} u_{1} v_{1}^{T}+\cdots+\sigma_{r} u_{r} v_{r}^{T}
\end{aligned}
$$

- we can drop the terms above $r=\operatorname{rank}(A) \leq n$
- data storage requirements for A can be significantly reduced in this way

SVD application: data compression

- further reduction is possible by discarding the small terms corresponding to the small singular values
- these often represent noise
- this gives important applications in image processing, digital data compression etc.
- for example a 500×337 image (168 K pixels)
$\rightarrow 337 \times 337$ SVD (114K pixels)
\rightarrow.....
$\rightarrow 50 \times 50$ compressed SVD (2.5 K pixels)

SVD application: data compression

SVD application: data compression

10 term SVD

30 term SVD

1 term SVD

How to use the SVD: zeroing

- an ill-conditioned system $\mathrm{Ax}=\mathrm{b}$ may have a direct solution by LU or Gauss, but this may be only a poor approximation of the exact solution x
- zero the 'small' singular values in the SVD and proceed
- i.e. give them exactly zero values
- the residual $|\mathrm{Ax}-\mathrm{b}|$ may be better than that for both
- the direct solution method and
- the SVD without zeroing

How to use the SVD: zeroing

- zeroing is equivalent to discarding one linear combination of equations
- for small singular values the equation is so corrupted by roundoff error that it is
- useless
- tends to pull the solution to infinity in a direction almost parallel to a nullspace vector (i.e. one for which $A x=0$)
- what's the threshold value for determining when to zero a singular values in the SVD?
- this depends on:
- the problem (conditioning)
- the hardware
- the desired residual
- etc etc (the art of numerical methods......)

SVD: solution of under-determined systems

- an under-determined system ($m<n$) has an ($n-m$)dimensional solution space (in general)
- the SVD will have n-m singular values with zero or negligible size that can be zeroed
- there may also be others if there are degeneracies in the $n-m$ equations
- after zeroing we can apply an algorithm to find the particular solution
- the columns of V are a basis for the null-space, so linear combinations of these added to the particular solution provides the solution space of the original problem

SVD: solution of over-determined systems

- an over-determined system requires a leastsquares fit to find the best fit solution
- the SVD is a valuable method to solve the leastsquares problem
- there may still be some degeneracies (close to zero s.v.'s)
- the associated columns of V correspond to x values that are insensitive to the data
- we can zero the s.v.'s to reduce the number of free parameters in the fit
- this topic is explored in Unit III....

